
User Guide for SuiteSparse:GraphBLAS

Timothy A. Davis
davis@tamu.edu, Texas A&M University.

http://suitesparse.com

https://people.engr.tamu.edu/davis

https://twitter.com/DocSparse

VERSION 10.1.1, July 25, 2025

Abstract

SuiteSparse:GraphBLAS is a full implementation of the Graph-
BLAS standard, which defines a set of sparse matrix operations on
an extended algebra of semirings using an almost unlimited variety
of operators and types. When applied to sparse adjacency matrices,
these algebraic operations are equivalent to computations on graphs.
GraphBLAS provides a powerful and expressive framework for creat-
ing high-performance graph algorithms based on the elegant mathe-
matics of sparse matrix operations on a semiring.

When compared with MATLAB R2021a, some methods in Graph-
BLAS are up to a million times faster than MATLAB, even when using
the same syntax. Typical speedups are in the range 2x to 30x. The
statement C(M)=A when using MATLAB sparse matrices takes O(e2)
time where e is the number of entries in C. GraphBLAS can perform
the same computation with the exact same syntax, but in O(e log e)
time (or O(e) in some cases), and in practice that means GraphBLAS
can compute C(M)=A for a large problem in under a second, while
MATLAB takes about 4 to 5 days.

SuiteSparse:GraphBLAS is under the Apache-2.0 license.

1

http://suitesparse.com
https://people.engr.tamu.edu/davis
https://twitter.com/DocSparse

Contents

1 Introduction 13

2 Basic Concepts 14
2.1 Graphs and sparse matrices . 14
2.2 Overview of GraphBLAS methods and operations 16
2.3 The accumulator and the mask . 19
2.4 Typecasting . 23
2.5 Notation and list of GraphBLAS operations 24

3 Changes in GraphBLAS v10: 32/64 bit integers 26
3.1 Controlling the sizes of integers . 26
3.2 Passing arrays to/from GraphBLAS 26
3.3 Container methods: loading/unloading data to/from a matrix or

vector . 29
3.4 Historical methods: pack/unpack 30

4 Interfaces to MATLAB, Octave, Python, Julia, Go, Java, ... 32
4.1 MATLAB/Octave Interface . 32
4.2 Performance of MATLAB versus GraphBLAS 33
4.3 Python Interface . 35
4.4 Julia Interface . 35
4.5 Go Interface . 35
4.6 Java Interface . 35

5 GraphBLAS Initialization/Finalization 36
5.1 Definitions that modify how GraphBLAS.h behaves 37
5.2 Overview of GraphBLAS initialization and finalization methods . . 38
5.3 GrB Index: the GraphBLAS integer 38
5.4 GrB init: initialize GraphBLAS . 39
5.5 GrB getVersion: determine the C API Version 41
5.6 GxB init: initialize with alternate malloc 41
5.7 GrB Info: status code returned by GraphBLAS 42
5.8 GrB error: get more details on the last error 43
5.9 GrB finalize: finish GraphBLAS . 44

6 GraphBLAS Objects and their Methods 45
6.1 The GraphBLAS type: GrB Type 46

6.1.1 GrB Type new: create a user-defined type 47

2

6.1.2 GxB Type new: create a user-defined type (with name and
definition) . 48

6.1.3 GrB Type wait: wait for a type 49
6.1.4 GxB Type from name: return the type from its name 50
6.1.5 GrB Type free: free a user-defined type 51

6.2 GraphBLAS unary operators: GrB UnaryOp, z = f(x) 52
6.2.1 GrB UnaryOp new: create a user-defined unary operator . . 55
6.2.2 GxB UnaryOp new: create a named user-defined unary oper-

ator . 56
6.2.3 GrB UnaryOp wait: wait for a unary operator 57
6.2.4 GrB UnaryOp free: free a user-defined unary operator 57

6.3 GraphBLAS binary operators: GrB BinaryOp, z = f(x, y) 58
6.3.1 GraphBLAS binary operators based on index binary operators 61
6.3.2 GrB BinaryOp new: create a user-defined binary operator . . 63
6.3.3 GxB BinaryOp new: create a named user-defined binary op-

erator . 64
6.3.4 GrB BinaryOp wait: wait for a binary operator 65
6.3.5 GrB BinaryOp free: free a user-defined binary operator . . . 65
6.3.6 ANY and PAIR (ONEB) operators 65

6.4 GraphBLAS IndexUnaryOp operators: GrB IndexUnaryOp 67
6.4.1 GrB IndexUnaryOp new: create a user-defined index-unary

operator . 69
6.4.2 GxB IndexUnaryOp new: create a named user-defined index-

unary operator . 70
6.4.3 GrB IndexUnaryOp wait: wait for an index-unary operator . 72
6.4.4 GrB IndexUnaryOp free: free a user-defined index-unary op-

erator . 72
6.5 GraphBLAS index-binary operators: GxB IndexBinaryOp 73

6.5.1 GxB IndexBinaryOp new: create a user-defined index-binary
operator . 75

6.5.2 GxB IndexBinaryOp wait: wait for an index-binary operator 77
6.5.3 GxB IndexBinaryOp free: free a user-defined index-binary op-

erator . 77
6.5.4 GxB BinaryOp new IndexOp: create a index-based binary op-

erator . 78
6.6 GraphBLAS monoids: GrB Monoid 79

6.6.1 GrB Monoid new: create a monoid 81
6.6.2 GrB Monoid wait: wait for a monoid 81
6.6.3 GxB Monoid terminal new: create a monoid with terminal . 82
6.6.4 GrB Monoid free: free a monoid 83

3

6.7 GraphBLAS semirings: GrB Semiring 84
6.7.1 GrB Semiring new: create a semiring 84
6.7.2 GrB Semiring wait: wait for a semiring 86
6.7.3 GrB Semiring free: free a semiring 86

6.8 GraphBLAS scalars: GrB Scalar . 87
6.8.1 GrB Scalar new: create a scalar 87
6.8.2 GrB Scalar wait: wait for a scalar 87
6.8.3 GrB Scalar dup: copy a scalar 88
6.8.4 GrB Scalar clear: clear a scalar of its entry 88
6.8.5 GrB Scalar nvals: return the number of entries in a scalar . 89
6.8.6 GrB Scalar setElement: set the single entry of a scalar . . . 89
6.8.7 GrB Scalar extractElement: get the single entry from a scalar 90
6.8.8 GxB Scalar memoryUsage: memory used by a scalar 90
6.8.9 GxB Scalar type: type of a scalar 90
6.8.10 GrB Scalar free: free a scalar 91

6.9 GraphBLAS vectors: GrB Vector 92
6.9.1 GrB Vector new: create a vector 93
6.9.2 GrB Vector wait: wait for a vector 93
6.9.3 GrB Vector dup: copy a vector 94
6.9.4 GrB Vector clear: clear a vector of all entries 94
6.9.5 GrB Vector size: return the size of a vector 95
6.9.6 GrB Vector nvals: return the number of entries in a vector . 95
6.9.7 GrB Vector build: build a vector from a set of tuples 95
6.9.8 GrB Vector build Vector: build a vector from a set of tuples 96
6.9.9 GxB Vector build Scalar: build a vector from a set of tuples 96
6.9.10 GxB Vector build Scalar Vector: build a vector from a set of

tuples . 97
6.9.11 GrB Vector setElement: add an entry to a vector 97
6.9.12 GrB Vector extractElement: get an entry from a vector . . . 98
6.9.13 GxB Vector isStoredElement: check if entry present in vector 98
6.9.14 GrB Vector removeElement: remove an entry from a vector . 98
6.9.15 GrB Vector extractTuples: get all entries from a vector . . . 99
6.9.16 GxB Vector extractTuples Vector: get all entries from a vector 99
6.9.17 GrB Vector resize: resize a vector 100
6.9.18 GxB Vector diag: extract a diagonal from a matrix 100
6.9.19 GxB Vector memoryUsage: memory used by a vector 101
6.9.20 GxB Vector type: type of a vector 101
6.9.21 GrB Vector free: free a vector 101

6.10 GraphBLAS matrices: GrB Matrix 102
6.10.1 GrB Matrix new: create a matrix 103

4

6.10.2 GrB Matrix wait: wait for a matrix 104
6.10.3 GrB Matrix dup: copy a matrix 104
6.10.4 GrB Matrix clear: clear a matrix of all entries 105
6.10.5 GrB Matrix nrows: return the number of rows of a matrix . 105
6.10.6 GrB Matrix ncols: return the number of columns of a matrix 105
6.10.7 GrB Matrix nvals: return the number of entries in a matrix . 106
6.10.8 GrB Matrix build: build a matrix from a set of tuples 106
6.10.9 GxB Matrix build Vector: build a matrix from a set of tuples 108
6.10.10GxB Matrix build Scalar: build a matrix from a set of tuples 109
6.10.11GxB Matrix build Scalar Vector: build a matrix from a set of

tuples . 109
6.10.12GrB Matrix setElement: add an entry to a matrix 110
6.10.13GrB Matrix extractElement: get an entry from a matrix . . . 111
6.10.14GxB Matrix isStoredElement: check if entry present in matrix 112
6.10.15GrB Matrix removeElement: remove an entry from a matrix 113
6.10.16GrB Matrix extractTuples: get all entries from a matrix . . . 113
6.10.17GxB Matrix extractTuples Vector: get all entries from a matrix114
6.10.18GrB Matrix resize: resize a matrix 114
6.10.19GxB Matrix reshape: reshape a matrix 115
6.10.20GxB Matrix reshapeDup: reshape a matrix 116
6.10.21GxB Matrix concat: concatenate matrices 116
6.10.22GxB Matrix split: split a matrix 117
6.10.23GrB Matrix diag: construct a diagonal matrix 117
6.10.24GxB Matrix diag: build a diagonal matrix 118
6.10.25GxB Matrix memoryUsage: memory used by a matrix 118
6.10.26GxB Matrix type: type of a matrix 119
6.10.27GrB Matrix free: free a matrix 119

6.11 Serialize/deserialize methods . 120
6.11.1 GxB Vector serialize: serialize a vector 122
6.11.2 GxB Vector deserialize: deserialize a vector 122
6.11.3 GrB Matrix serializeSize: return size of serialized matrix . . 123
6.11.4 GrB Matrix serialize: serialize a matrix 123
6.11.5 GxB Matrix serialize: serialize a matrix 124
6.11.6 GrB Matrix deserialize: deserialize a matrix 124
6.11.7 GxB Matrix deserialize: deserialize a matrix 125

6.12 The GxB Container object and its methods 126
6.12.1 GxB Vector load: load data into a vector 127
6.12.2 GxB Vector unload: unload data from a vector 128
6.12.3 GxB Container new: create a container 129
6.12.4 GxB Container free: free a container 131

5

6.12.5 GxB load Matrix from Container: load a matrix from a con-
tainer . 131

6.12.6 GxB load Vector from Container: load a vector from a container131
6.12.7 GxB unload Matrix into Container: unload a matrix into a

container . 132
6.12.8 GxB unload Vector into Container: unload a vector into a con-

tainer . 132
6.12.9 Container example: unloading/loading an entire matrix into

C arrays . 132
6.12.10Container example: unloading/loading, but not using C arrays135

6.13 SuiteSparse:GraphBLAS data formats 136
6.13.1 Sparse, held by row . 136
6.13.2 Sparse, held by column . 138
6.13.3 Hypersparse, held by row 139
6.13.4 Hypersparse, held by column 141
6.13.5 Bitmap, held by row . 141
6.13.6 Bitmap, held by column . 141
6.13.7 Full, held by row . 141
6.13.8 Full, held by column . 142

6.14 GraphBLAS import/export: using copy semantics 143
6.14.1 GrB Matrix import: import a matrix 144
6.14.2 GrB Matrix export: export a matrix 145
6.14.3 GrB Matrix exportSize: determine size of export 146
6.14.4 GrB Matrix exportHint: determine best export format 146

6.15 Sorting methods . 147
6.15.1 GxB Vector sort: sort a vector 147
6.15.2 GxB Matrix sort: sort the rows/columns of a matrix 147

6.16 GraphBLAS descriptors: GrB Descriptor 149
6.16.1 GrB Descriptor new: create a new descriptor 153
6.16.2 GrB Descriptor wait: wait for a descriptor 153
6.16.3 GrB Descriptor free: free a descriptor 154
6.16.4 Descriptor settings for GrB Vector parameters 154
6.16.5 GrB DESC *: built-in descriptors 156

6.17 GrB free: free any GraphBLAS object 157

7 The mask, accumulator, and replace option 158

8 GxB Context: controlling computational resources 161
8.1 GxB Context new: create a new context 163
8.2 GxB Context engage: engaging context 163

6

8.3 GxB Context disengage: disengaging context 164
8.4 GxB Context free: free a context . 164
8.5 GxB Context wait: wait for a context 165

9 The SuiteSparse:GraphBLAS JIT 166
9.1 Using the JIT . 166

9.1.1 GxB JIT C CONTROL . 167
9.1.2 JIT error handling . 168
9.1.3 GxB JIT C COMPILER NAME 170
9.1.4 GxB JIT C COMPILER FLAGS 170
9.1.5 GxB JIT C LINKER FLAGS 170
9.1.6 GxB JIT C LIBRARIES . 171
9.1.7 GxB JIT C CMAKE LIBS . 171
9.1.8 GxB JIT C PREFACE . 171
9.1.9 GxB JIT USE CMAKE . 171
9.1.10 GxB JIT ERROR LOG . 172
9.1.11 GxB JIT CACHE PATH . 172

9.2 Compilation options: GRAPHBLAS USE JIT and GRAPHBLAS COMPACT173
9.3 Adding PreJIT kernels to GraphBLAS 173
9.4 JIT and PreJIT performance considerations 175
9.5 Mixing JIT kernels: MATLAB and Apple Silicon 176
9.6 Updating the JIT when GraphBLAS source code changes 177
9.7 Future plans for the JIT and PreJIT 177

9.7.1 Kernel fusion . 177
9.7.2 Heuristics for controlling the JIT 177
9.7.3 CUDA / SYCL / OpenCL kernels 177
9.7.4 Better performance for multithreaded user programs: 178

10 GraphBLAS Options (GrB get and GrB set) 179
10.1 Enum types for get/set . 182
10.2 Global Options (GrB Global) . 185

10.2.1 Global diagnostic settings 187
10.2.2 OpenMP parallelism . 188
10.2.3 Other global options . 190

10.3 GrB Type Options . 191
10.4 GrB UnaryOp Options . 193
10.5 GrB IndexUnaryOp Options . 194
10.6 GrB BinaryOp Options . 195
10.7 GxB IndexBinaryOp Options . 197
10.8 GrB Monoid Options . 198

7

10.9 GrB Semiring Options . 200
10.10GrB Matrix Options . 202

10.10.1Storing a matrix by row or by column 203
10.10.2Hypersparse matrices . 204
10.10.3Bitmap matrices . 206
10.10.4Sparsity status . 207
10.10.5 iso status . 208
10.10.6wait status . 208

10.11GrB Vector Options . 209
10.12GrB Scalar Options . 210
10.13Controlling the sizes of integers . 210
10.14GrB Descriptor Options . 212
10.15GxB Context Options . 214
10.16Options for inspecting a serialized blob 215

11 SuiteSparse:GraphBLAS Colon and Index Notation 216

12 GraphBLAS Operations 221
12.1 GrB mxm: matrix-matrix multiply 222
12.2 GrB vxm: vector-matrix multiply 224
12.3 GrB mxv: matrix-vector multiply 225
12.4 GrB eWiseMult: element-wise operations, set intersection 226

12.4.1 GrB Vector eWiseMult: element-wise vector multiply 227
12.4.2 GrB Matrix eWiseMult: element-wise matrix multiply 228

12.5 GrB eWiseAdd: element-wise operations, set union 229
12.5.1 GrB Vector eWiseAdd: element-wise vector addition 230
12.5.2 GrB Matrix eWiseAdd: element-wise matrix addition 231

12.6 GxB eWiseUnion: element-wise operations, set union 232
12.6.1 GxB Vector eWiseUnion: element-wise vector addition . . . 233
12.6.2 GxB Matrix eWiseUnion: element-wise matrix addition . . . 234

12.7 GrB extract: submatrix extraction 235
12.7.1 GrB Vector extract: extract subvector from vector 235
12.7.2 GxB Vector extract Vector: extract subvector from vector . . 235
12.7.3 GrB Matrix extract: extract submatrix from matrix 236
12.7.4 GxB Matrix extract Vector: extract submatrix from matrix . 237
12.7.5 GrB Col extract: extract column vector from matrix 237
12.7.6 GxB Col extract Vector: extract column vector from matrix 238

12.8 GrB assign: submatrix assignment 239
12.8.1 GrB Vector assign: assign to a subvector 239
12.8.2 GxB Vector assign Vector: assign to a subvector 239

8

12.8.3 GrB Matrix assign: assign to a submatrix 240
12.8.4 GxB Matrix assign Vector: assign to a submatrix 241
12.8.5 GrB Col assign: assign to a sub-column of a matrix 242
12.8.6 GxB Col assign Vector: assign to a sub-column of a matrix . 242
12.8.7 GrB Row assign: assign to a sub-row of a matrix 243
12.8.8 GxB Row assign Vector: assign to a sub-row of a matrix . . 244
12.8.9 GrB Vector assign <type>: assign a scalar to a subvector . . 244
12.8.10GxB Vector assign Scalar Vector: assign a scalar to a subvector245
12.8.11GrB Matrix assign <type>: assign a scalar to a submatrix . 245
12.8.12GxB Matrix assign Scalar Vector: assign a scalar to a submatrix246

12.9 GxB subassign: submatrix assignment 248
12.9.1 GxB Vector subassign: assign to a subvector 248
12.9.2 GxB Vector subassign Vector: assign to a subvector 249
12.9.3 GxB Matrix subassign: assign to a submatrix 249
12.9.4 GxB Matrix subassign Vector: assign to a submatrix 251
12.9.5 GxB Col subassign: assign to a sub-column of a matrix . . . 252
12.9.6 GxB Col subassign Vector: assign to a sub-column of a matrix 252
12.9.7 GxB Row subassign: assign to a sub-row of a matrix 253
12.9.8 GxB Row subassign Vector: assign to a sub-row of a matrix 254
12.9.9 GxB Vector subassign <type>: assign a scalar to a subvector 254
12.9.10GxB Vector subassign Scalar Vector: assign a scalar to a sub-

vector . 255
12.9.11GxB Matrix subassign <type>: assign a scalar to a submatrix 255
12.9.12GxB Matrix subassign Scalar Vector: assign a scalar to a sub-

matrix . 256
12.10Duplicate indices in GrB assign and GxB subassign 258
12.11Comparing GrB assign and GxB subassign 261

12.11.1Example . 266
12.11.2Performance of GxB subassign, GrB assign and GrB * setElement267

12.12GrB apply: apply a unary, binary, or index-unary operator 270
12.12.1GrB Vector apply: apply a unary operator to a vector 270
12.12.2GrB Matrix apply: apply a unary operator to a matrix . . . 271
12.12.3GrB Vector apply BinaryOp1st: apply a binary operator to a

vector; 1st scalar binding 272
12.12.4GrB Vector apply BinaryOp2nd: apply a binary operator to a

vector; 2nd scalar binding 273
12.12.5GrB Vector apply IndexOp: apply an index-unary operator to

a vector . 273
12.12.6GrB Matrix apply BinaryOp1st: apply a binary operator to a

matrix; 1st scalar binding 274

9

12.12.7GrB Matrix apply BinaryOp2nd: apply a binary operator to
a matrix; 2nd scalar binding 274

12.12.8GrB Matrix apply IndexOp: apply an index-unary operator
to a matrix . 275

12.13GrB select: select entries based on an index-unary operator 276
12.13.1GrB Vector select: select entries from a vector 276
12.13.2GrB Matrix select: apply a select operator to a matrix . . . 277

12.14GrB reduce: reduce to a vector or scalar 279
12.14.1GrB Matrix reduce Monoid reduce a matrix to a vector . . . 279
12.14.2GrB Vector reduce <type>: reduce a vector to a scalar . . . 280
12.14.3GrB Matrix reduce <type>: reduce a matrix to a scalar . . . 281

12.15GrB transpose: transpose a matrix 282
12.16GrB kronecker: Kronecker product 283

13 Printing GraphBLAS objects 284
13.1 GxB fprint: Print a GraphBLAS object to a file 286
13.2 GxB print: Print a GraphBLAS object to stdout 286
13.3 GxB Type fprint: Print a GrB Type 286
13.4 GxB UnaryOp fprint: Print a GrB UnaryOp 287
13.5 GxB BinaryOp fprint: Print a GrB BinaryOp 287
13.6 GxB IndexUnaryOp fprint: Print a GrB IndexUnaryOp 287
13.7 GxB IndexBinaryOp fprint: Print a GxB IndexBinaryOp 288
13.8 GxB Monoid fprint: Print a GrB Monoid 288
13.9 GxB Semiring fprint: Print a GrB Semiring 288
13.10GxB Descriptor fprint: Print a GrB Descriptor 289
13.11GxB Context fprint: Print a GxB Context 289
13.12GxB Matrix fprint: Print a GrB Matrix 289
13.13GxB Vector fprint: Print a GrB Vector 290
13.14GxB Scalar fprint: Print a GrB Scalar 290
13.15Performance and portability considerations 290

14 Matrix and Vector iterators 292
14.1 Creating and destroying an iterator 293
14.2 Attaching an iterator to a matrix or vector 293
14.3 Seeking to an arbitrary position . 294
14.4 Advancing to the next position . 297
14.5 Accessing the indices of the current entry 299
14.6 Accessing the value of the current entry 301
14.7 Example: row iterator for a matrix 303
14.8 Example: column iterator for a matrix 304

10

14.9 Example: entry iterator for a matrix 305
14.10Example: vector iterator . 305
14.11Performance . 306

15 Iso-Valued Matrices and Vectors 307
15.1 Using iso matrices and vectors in a graph algorithm 307
15.2 Iso matrices from matrix multiplication 309
15.3 Iso matrices from eWiseMult and kronecker 310
15.4 Iso matrices from eWiseAdd . 310
15.5 Iso matrices from eWiseUnion . 311
15.6 Reducing iso matrices to a scalar or vector 311
15.7 Iso matrices from apply . 312
15.8 Iso matrices from select . 312
15.9 Iso matrices from assign and subassign 313

15.9.1 Assignment with no accumulator operator 313
15.9.2 Assignment with an accumulator operator 314

15.10Iso matrices from build methods 315
15.11Iso matrices from other methods 315
15.12Iso matrices not exploited . 316

16 Performance 317
16.1 The burble is your friend . 317
16.2 Data types and typecasting: use the JIT 317
16.3 Matrix data structures: sparse, hypersparse, bitmap, or full 318
16.4 Matrix formats: by row or by column, or using the transpose of a

matrix . 318
16.5 Push/pull optimization . 320
16.6 Computing with full matrices and vectors 321
16.7 Iso-valued matrices and vectors . 322
16.8 User-defined types and operators: use the JIT 323
16.9 About NUMA systems . 323

17 Examples 324
17.1 LAGraph . 324
17.2 Creating a random matrix . 324
17.3 Creating a finite-element matrix 326
17.4 Reading a matrix from a file . 329
17.5 User-defined types and operators 332
17.6 User applications using OpenMP or other threading models 333

11

18 Compiling and Installing SuiteSparse:GraphBLAS 334
18.1 Quick Start . 334
18.2 Requirements . 334
18.3 Installing GraphBLAS for MATLAB/Octave 335
18.4 More details . 335

18.4.1 On Linux and Mac . 335
18.4.2 On the Mac (Intel or ARM) 337
18.4.3 On the Intel-based Mac . 337
18.4.4 On Microsoft Windows . 337
18.4.5 Mac using clang . 339
18.4.6 Linking issues after installation 340
18.4.7 Running the tests . 341
18.4.8 Cleaning up . 341

19 Release Notes 342
19.1 Regarding historical and deprecated functions and symbols 365

20 Acknowledgments 365

21 Additional Resources 366

References 366

12

1 Introduction

The GraphBLAS standard defines sparse matrix and vector operations on an
extended algebra of semirings. The operations are useful for creating a wide
range of graph algorithms.

For example, consider the matrix-matrix multiplication, C = AB. Sup-
pose A and B are sparse n-by-n Boolean adjacency matrices of two undi-
rected graphs. If the matrix multiplication is redefined to use logical AND
instead of scalar multiply, and if it uses the logical OR instead of add, then
the matrix C is the sparse Boolean adjacency matrix of a graph that has an
edge (i, j) if node i in A and node j in B share any neighbor in common. The
OR-AND pair forms an algebraic semiring, and many graph operations like
this one can be succinctly represented by matrix operations with different
semirings and different numerical types. GraphBLAS provides a wide range
of built-in types and operators, and allows the user application to create new
types and operators without needing to recompile the GraphBLAS library.

For more details on SuiteSparse:GraphBLAS, and its use in LAGraph,
see [Dav19, Dav23, Dav18, DAK19, ACD+20, MDK+19].

A full and precise definition of the GraphBLAS specification is pro-
vided in The GraphBLAS C API Specification by Aydın Buluç, Timothy
Mattson, Scott McMillan, José Moreira, Carl Yang, and Benjamin Brock
[BMM+17a, BMM+17b, BBM+21], based on GraphBLAS Mathematics by
Jeremy Kepner [Kep17]. The GraphBLAS C API Specification is available
at http://graphblas.org. This version of SuiteSparse:GraphBLAS conforms to
Version 2.1.0 (Dec 22, 2023) of The GraphBLAS C API specification.

In this User Guide, aspects of the GraphBLAS specification that would be
true for any GraphBLAS implementation are simply called “GraphBLAS.”
Details unique to this particular implementation are referred to as Suite-
Sparse:GraphBLAS.

All functions, objects, and macros with a name of the form GxB_* are
SuiteSparse-specific extensions to the specification.

SPEC: Non-obvious deviations or additions to the GraphBLAS C API
Specification are highlighted in a box like this one, except for GxB* meth-
ods. They are not highlighted since their name makes it clear that they
are extensions to the GraphBLAS C API.

13

http://graphblas.org

2 Basic Concepts

Since the GraphBLAS C API Specification provides a precise definition of
GraphBLAS, not every detail of every function is provided here. For example,
some error codes returned by GraphBLAS are self-explanatory, but since a
specification must precisely define all possible error codes a function can
return, these are listed in detail in the GraphBLAS C API Specification.
However, including them here is not essential and the additional information
on the page might detract from a clearer view of the essential features of the
GraphBLAS functions.

This User Guide also assumes the reader is familiar with MATLAB/Octave.
MATLAB supports only the conventional plus-times semiring on sparse dou-
ble and complex matrices, but a MATLAB-like notation easily extends to the
arbitrary semirings used in GraphBLAS. The matrix multiplication in the ex-
ample in the Introduction can be written in MATLAB notation as C=A*B,
if the Boolean OR-AND semiring is understood. Relying on a MATLAB-like
notation allows the description in this User Guide to be expressive, easy to
understand, and terse at the same time. The GraphBLAS C API Specifi-
cation also makes use of some MATLAB-like language, such as the colon
notation.

MATLAB notation will always appear here in fixed-width font, such as
C=A*B(:,j). In standard mathematical notation it would be written as the
matrix-vector multiplication C = Abj where bj is the jth column of the ma-
trix B. The GraphBLAS standard is a C API and SuiteSparse:GraphBLAS
is written in C, and so a great deal of C syntax appears here as well, also
in fixed-width font. This User Guide alternates between all three styles as
needed.

2.1 Graphs and sparse matrices

Graphs can be huge, with many nodes and edges. A dense adjacency matrix
A for a graph of n nodes takes O(n2) memory, which is impossible if n is,
say, a million. Let |A| denote the number of entries in a matrix. Most graphs
arising in practice are sparse, however, with only |A| = O(n) edges, where
|A| denotes the number of edges in the graph, or the number of explicit
entries present in the data structure for the matrix A. Sparse graphs with
millions of nodes and edges can easily be created by representing them as
sparse matrices, where only explicit values need to be stored. Some graphs

14

are hypersparse, with |A| << n. SuiteSparse:GraphBLAS supports three
kinds of sparse matrix formats: a regular sparse format, taking O(n + |A|)
space, a hypersparse format taking only O(|A|) space, and a bitmap form,
taking O(n2) space. Full matrices are also represented in O(n2) space. Using
its hypersparse format, creating a sparse matrix of size n-by-n where n = 260

(about 1018) can be done on quite easily on a commodity laptop, limited only
by |A|. To the GraphBLAS user application, all matrices look alike, since
these formats are opaque, and SuiteSparse:GraphBLAS switches between
them at will.

A sparse matrix data structure only stores a subset of the possible n2

entries, and it assumes the values of entries not stored have some implicit
value. In conventional linear algebra, this implicit value is zero, but it differs
with different semirings. Explicit values are called entries and they appear
in the data structure. The pattern (also called the structure) of a matrix
defines where its explicit entries appear. It will be referenced in one of two
equivalent ways. It can be viewed as a set of indices (i, j), where (i, j) is in the
pattern of a matrix A if A(i, j) is an explicit value. It can also be viewed as
a Boolean matrix S where S(i, j) is true if (i, j) is an explicit entry and false
otherwise. In MATLAB notation, S=spones(A) or S=(A~=0), if the implicit
value is zero. The (i,j) pairs, and their values, can also be extracted from
the matrix via the MATLAB expression [I,J,X]=find(A), where the kth
tuple (I(k),J(k),X(k)) represents the explicit entry A(I(k),J(k)), with
numerical value X(k) equal to aij, with row index i=I(k) and column index
j=J(k).

The entries in the pattern of A can take on any value, including the im-
plicit value, whatever it happens to be. This differs slightly from MATLAB,
which always drops all explicit zeros from its sparse matrices. This is a minor
difference but GraphBLAS cannot drop explicit zeros. For example, in the
max-plus tropical algebra, the implicit value is negative infinity, and zero
has a different meaning. Here, the MATLAB notation used will assume that
no explicit entries are ever dropped because their explicit value happens to
match the implicit value.

Graph Algorithms in the Language on Linear Algebra, Kepner and Gilbert,
eds., provides a framework for understanding how graph algorithms can be
expressed as matrix computations [KG11]. For additional background on
sparse matrix algorithms, see also [Dav06] and [DRSL16].

15

2.2 Overview of GraphBLAS methods and operations

GraphBLAS provides a collection of methods to create, query, and free its
objects: matrices, vectors, scalars, types, operators, monoids, semirings, a
descriptor object used for parameter settings, a context object (for controlling
parallelism), and a container object (for moving data in and out of Graph-
BLAS), and an iterator object. Details are given in Section 6. Once these
objects are created they can be used in mathematical operations (not to be
confused with the how the term operator is used in GraphBLAS). A short
summary of these operations and their nearest MATLAB/Octave analog is
given in the table below.

operation approximate MATLAB/Octave analog
matrix multiplication C=A*B

element-wise operations C=A+B and C=A.*B

reduction to a vector or scalar s=sum(A)

apply unary operator C=-A

transpose C=A’

submatrix extraction C=A(I,J)

submatrix assignment C(I,J)=A

select C=tril(A)

GraphBLAS can do far more than what MATLAB/Octave can do in
these rough analogs, but the list provides a first step in describing what
GraphBLAS can do. Details of each GraphBLAS operation are given in
Section 12. With this brief overview, the full scope of GraphBLAS extensions
of these operations can now be described.

SuiteSparse:GraphBLAS has 13 built-in scalar types: Boolean, single and
double precision floating-point (real and complex), and 8, 16, 32, and 64-bit
signed and unsigned integers. In addition, user-defined scalar types can be
created from nearly any C typedef, as long as the entire type fits in a fixed-
size contiguous block of memory (of arbitrary size). All of these types can
be used to create GraphBLAS sparse matrices, vectors, or scalars.

The scalar addition of conventional matrix multiplication is replaced with
a monoid. A monoid is an associative and commutative binary operator
z=f(x,y) where all three domains are the same (the types of x, y, and z), and
where the operator has an identity value id such that f(x,id)=f(id,x)=x.
Performing matrix multiplication with a semiring uses a monoid in place of
the “add” operator, scalar addition being just one of many possible monoids.

16

The identity value of addition is zero, since x+ 0 = 0 + x = x. GraphBLAS
includes many built-in operators suitable for use as a monoid: min (with
an identity value of positive infinity), max (whose identity is negative infin-
ity), add (identity is zero), multiply (with an identity of one), four logical
operators: AND, OR, exclusive-OR, and Boolean equality (XNOR), four bit-
wise operators (AND, OR, XOR, and XNOR), and the ANY operator. See
Section 6.3.6 for more details on the unusual ANY operator. User-created
monoids can be defined with any associative and commutative operator that
has an identity value.

Finally, a semiring can use any built-in or user-defined binary operator
z=f(x,y) as its “multiply” operator, as long as the type of its output, z
matches the type of the semiring’s monoid. The user application can create
any semiring based on any types, monoids, and multiply operators, as long
these few rules are followed.

Just considering built-in types and operators, GraphBLAS can perform
C=A*B in thousands of unique semirings. With typecasting, any of these
semirings can be applied to matrices C, A, and B of 13 predefined types, in
any combination. This results in millions of possible kinds of sparse matrix
multiplication supported by GraphBLAS, and this is counting just built-in
types and operators. By contrast, MATLAB provides just two semirings
for its sparse matrix multiplication C=A*B: plus-times-double and plus-times-
complex, not counting the typecasting that MATLAB does when multiplying
a real matrix times a complex matrix.

A monoid can also be used in a reduction operation, like s=sum(A) in
MATLAB. MATLAB provides the plus, times, min, and max reductions of
a real or complex sparse matrix as s=sum(A), s=prod(A), s=min(A), and
s=max(A), respectively. In GraphBLAS, any monoid can be used (min, max,
plus, times, AND, OR, exclusive-OR, equality, bitwise operators, or any user-
defined monoid on any user-defined type).

Element-wise operations are also expanded from what can be done in
MATLAB. Consider matrix addition, C=A+B in MATLAB. The pattern of
the result is the set union of the pattern of A and B. In GraphBLAS, any
binary operator can be used in this set-union “addition.” The operator is
applied to entries in the intersection. Entries in A but not B, or visa-versa,
are copied directly into C, without any application of the binary operator.
The accumulator operation for Z = C⊙T described in Section 2.3 is one
example of this set-union application of an arbitrary binary operator.

Consider element-wise multiplication, C=A.*B in MATLAB. The operator

17

(multiply in this case) is applied to entries in the set intersection, and the
pattern of C just this set intersection. Entries in A but not B, or visa-versa,
do not appear in C. In GraphBLAS, any binary operator can be used in this
manner, not just scalar multiplication. The difference between element-wise
“add” and “multiply” is not the operators, but whether or not the pattern of
the result is the set union or the set intersection. In both cases, the operator
is only applied to the set intersection.

Finally, GraphBLAS includes a non-blocking mode where operations can
be left pending, and saved for later. This is very useful for submatrix as-
signment (C(I,J)=A where I and J are integer vectors), or scalar assignment
(C(i,j)=x where i and j are scalar integers). Because of how MATLAB
stores its matrices, adding and deleting individual entries is very costly. For
example, this is very slow in MATLAB, taking O(e2) time (where e is the
number of entries added to the matrix):

A = sparse (m,n) ; % an empty sparse matrix

for k = 1:e

compute a value x, row index i, and column index j

A (i,j) = x ;

end

The above code is very easy read and simple to write, but exceedingly
slow. In MATLAB, the method below is preferred and is far faster, taking
at most O(e log e + n) time. It can easily be a million times faster than the
method above. Unfortunately the second method below is a little harder to
read and a little less natural to write:

I = zeros (e,1) ;

J = zeros (e,1) ;

X = zeros (e,1) ;

for k = 1:e

compute a value x, row index i, and column index j

I (k) = i ;

J (k) = j ;

X (k) = x ;

end

A = sparse (I,J,X,m,n) ;

GraphBLAS can do both methods. SuiteSparse:GraphBLAS stores its
matrices in a format that allows for pending computations, which are done
later in bulk, and as a result it can do both methods above equally as fast
as the MATLAB sparse function, allowing the user to write simpler code.

18

2.3 The accumulator and the mask

Most GraphBLAS operations can be modified via transposing input matrices,
using an accumulator operator, applying a mask or its complement, and by
clearing all entries the matrix C after using it in the accumulator operator but
before the final results are written back into it. All of these steps are optional,
and are controlled by a descriptor object that holds parameter settings (see
Section 6.16) that control the following options:

� the input matrices A and/or B can be transposed first.

� an accumulator operator can be used, like the plus in the statement
C=C+A*B. The accumulator operator can be any binary operator, and
an element-wise “add” (set union) is performed using the operator.

� an optional mask can be used to selectively write the results to the
output. The mask is a sparse Boolean matrix Mask whose size is the
same size as the result. If Mask(i,j) is true, then the corresponding
entry in the output can be modified by the computation. If Mask(i,j)
is false, then the corresponding in the output is protected and cannot
be modified by the computation. The Mask matrix acts exactly like
logical matrix indexing in MATLAB, with one minor difference: in
GraphBLAS notation, the mask operation is C⟨M⟩ = Z, where the
mask M appears only on the left-hand side. In MATLAB, it would
appear on both sides as C(Mask)=Z(Mask). If no mask is provided, the
Mask matrix is implicitly all true. This is indicated by passing the value
GrB_NULL in place of the Mask argument in GraphBLAS operations.

This process can be described in mathematical notation as:

A = AT, if requested via descriptor (first input option)

B = BT, if requested via descriptor (second input option)
T is computed according to the specific operation
C⟨M⟩ = C⊙T, accumulating and writing the results back via the mask

The application of the mask and the accumulator operator is written as
C⟨M⟩ = C⊙T where Z = C⊙T denotes the application of the accumu-
lator operator, and C⟨M⟩ = Z denotes the mask operator via the Boolean
matrix M. The Accumulator Phase, Z = C⊙T, is performed as follows:

19

Accumulator Phase: compute Z = C⊙T:
if accum is NULL

Z = T
else

Z = C⊙T

The accumulator operator is ⊙ in GraphBLAS notation, or accum in the
code. The pattern of C⊙T is the set union of the patterns of C and T, and
the operator is applied only on the set intersection of C and T. Entries in
neither the pattern of C nor T do not appear in the pattern of Z. That is:

for all entries (i, j) in C ∩T (that is, entries in both C and T)
zij = cij ⊙ tij

for all entries (i, j) in C \T (that is, entries in C but not T)
zij = cij

for all entries (i, j) in T \C (that is, entries in T but not C)
zij = tij

The Accumulator Phase is followed by the Mask/Replace Phase,C⟨M⟩ = Z
as controlled by the GrB_REPLACE and GrB_COMP descriptor options:

Mask/Replace Phase: compute C⟨M⟩ = Z:
if (GrB_REPLACE) delete all entries in C
if Mask is NULL

if (GrB_COMP)
C is not modified

else
C = Z

else
if (GrB_COMP)

C⟨¬M⟩ = Z
else

C⟨M⟩ = Z

Both phases of the accum/mask process are illustrated in MATLAB no-
tation in Figure 1.

A GraphBLAS operation starts with its primary computation, producing
a result T; for matrix multiply, T=A*B, or if A is transposed first, T=A’*B, for
example. Applying the accumulator, mask (or its complement) to obtain the
final result matrix C can be expressed in the MATLAB accum_mask function

20

function C = accum_mask (C, Mask, accum, T, C_replace, Mask_complement)

[m n] = size (C.matrix) ;

Z.matrix = zeros (m, n) ;

Z.pattern = false (m, n) ;

if (isempty (accum))

Z = T ; % no accum operator

else

% Z = accum (C,T), like Z=C+T but with an binary operator, accum

p = C.pattern & T.pattern ; Z.matrix (p) = accum (C.matrix (p), T.matrix (p));

p = C.pattern & ~T.pattern ; Z.matrix (p) = C.matrix (p) ;

p = ~C.pattern & T.pattern ; Z.matrix (p) = T.matrix (p) ;

Z.pattern = C.pattern | T.pattern ;

end

% apply the mask to the values and pattern

C.matrix = mask (C.matrix, Mask, Z.matrix, C_replace, Mask_complement) ;

C.pattern = mask (C.pattern, Mask, Z.pattern, C_replace, Mask_complement) ;

end

function C = mask (C, Mask, Z, C_replace, Mask_complement)

% replace C if requested

if (C_replace)

C (:,:) = 0 ;

end

if (isempty (Mask)) % if empty, Mask is implicit ones(m,n)

% implicitly, Mask = ones (size (C))

if (~Mask_complement)

C = Z ; % this is the default

else

C = C ; % Z need never have been computed

end

else

% apply the mask

if (~Mask_complement)

C (Mask) = Z (Mask) ;

else

C (~Mask) = Z (~Mask) ;

end

end

end

Figure 1: Applying the mask and accumulator, C⟨M⟩ = C⊙T

21

shown in the figure. This function is an exact, fully functional, and nearly-
complete description of the GraphBLAS accumulator/mask operation. The
only aspects it does not consider are typecasting (see Section 2.4), and the
value of the implicit identity (for those, see another version in the Test

folder).
One aspect of GraphBLAS cannot be as easily expressed in a MATLAB

sparse matrix: namely, what is the implicit value of entries not in the pat-
tern? To accommodate this difference in the accum_mask MATLAB func-
tion, each sparse matrix A is represented with its values A.matrix and its
pattern, A.pattern. The latter could be expressed as the sparse matrix
A.pattern=spones(A) or A.pattern=(A~=0) in MATLAB, if the implicit
value is zero. With different semirings, entries not in the pattern can be 1,
+Inf, -Inf, or whatever is the identity value of the monoid. As a result,
Figure 1 performs its computations on two MATLAB matrices: the values in
A.matrix and the pattern in the logical matrix A.pattern. Implicit values
are untouched.

The final computation in Figure 1 with a complemented Mask is easily
expressed in MATLAB as C(~Mask)=Z(~Mask) but this is costly if Mask is
very sparse (the typical case). It can be computed much faster in MATLAB
without complementing the sparse Mask via:

R = Z ; R (Mask) = C (Mask) ; C = R ;

A set of MATLAB functions that precisely compute the C⟨M⟩ = C⊙T
operation according to the full GraphBLAS specification is provided in Suite-
Sparse:GraphBLAS as GB_spec_accum.m, which computes Z = C⊙T, and
GB_spec_mask.m, which computes C⟨M⟩ = Z. SuiteSparse:GraphBLAS in-
cludes a complete list of GB_spec_* functions that illustrate every Graph-
BLAS operation.

The methods in Figure 1 rely heavily on MATLAB’s logical matrix in-
dexing. For those unfamiliar with logical indexing in MATLAB, here is short
summary. Logical matrix indexing in MATLAB is written as A(Mask) where
A is any matrix and Mask is a logical matrix the same size as A. The expression
x=A(Mask) produces a column vector x consisting of the entries of A where
Mask is true. On the left-hand side, logical submatrix assignment A(Mask)=x
does the opposite, copying the components of the vector x into the places in
A where Mask is true. For example, to negate all values greater than 10 using
logical indexing in MATLAB:

22

>> A = magic (4)

A =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

>> A (A>10) = - A (A>10)

A =

-16 2 3 -13

5 -11 10 8

9 7 6 -12

4 -14 -15 1

In MATLAB, logical indexing with a sparse matrix A and sparse logical
matrix Mask is a built-in method. The Mask operator in GraphBLAS works
identically as sparse logical indexing in MATLAB, but is typically far faster
in SuiteSparse:GraphBLAS than the same operation using MATLAB sparse
matrices.

2.4 Typecasting

If an operator z=f(x) or z=f(x,y) is used with inputs that do not match
its inputs x or y, or if its result z does not match the type of the matrix it
is being stored into, then the values are typecasted. Typecasting in Graph-
BLAS extends beyond just operators. Almost all GraphBLAS methods and
operations are able to typecast their results, as needed.

If one type can be typecasted into the other, they are said to be compat-
ible. All built-in types are compatible with each other. GraphBLAS cannot
typecast user-defined types thus any user-defined type is only compatible
with itself. When GraphBLAS requires inputs of a specific type, or when
one type cannot be typecast to another, the GraphBLAS function returns an
error code, GrB_DOMAIN_MISMATCH (refer to Section 5.8 for a complete list of
error codes). Typecasting can only be done between built-in types, and it
follows the rules of the ANSI C language (not MATLAB) wherever the rules
of ANSI C are well-defined.

However, unlike MATLAB, the C11 language specification states that the
results of typecasting a float or double to an integer type is not always de-
fined. In SuiteSparse:GraphBLAS, whenever C leaves the result undefined
the rules used in MATLAB are followed. In particular +Inf converts to the
largest integer value, -Inf converts to the smallest (zero for unsigned in-

23

tegers), and NaN converts to zero. Positive values outside the range of the
integer are converted to the largest positive integer, and negative values less
than the most negative integer are converted to that most negative inte-
ger. Other than these special cases, SuiteSparse:GraphBLAS trusts the C
compiler for the rest of its typecasting.

Typecasting to bool is fully defined in the C language specification, even
for NaN. The result is false if the value compares equal to zero, and true
otherwise. Thus NaN converts to true. This is unlike MATLAB, which does
not allow a typecast of a NaN to the MATLAB logical type.

SPEC: the GraphBLAS API C Specification states that typecasting fol-
lows the rules of ANSI C. Yet C leaves some typecasting undefined. All
typecasting between built-in types in SuiteSparse:GraphBLAS is pre-
cisely defined, as an extension to the specification.

SPEC: Some functions do not make use of all of their inputs; in par-
ticular the binary operators FIRST, SECOND, and ONEB, and many of the
index unary operators. The Specification requires that the inputs to
these operators must be compatible with (that is, can be typecasted
to) the inputs to the operators, even if those inputs are not used and
no typecasting would ever occur. As an extension to the specification,
SuiteSparse:GraphBLAS does not perform this error check on unused
inputs of built-in operators. For example, the GrB_FIRST_INT64 opera-
tor can be used in GrB_eWiseMult(C,..,A,B,...) on a matrix B of any
type, including user-defined types. For this case, the matrix A must be
compatible with GrB_INT64.

2.5 Notation and list of GraphBLAS operations

As a summary of what GraphBLAS can do, the following table lists all Graph-
BLAS operations. Upper case letters denote a matrix, lower case letters are
vectors, and AB denote the multiplication of two matrices over a semiring.

Each operation takes an optional GrB_Descriptor argument that modi-
fies the operation. The input matricesA andB can be optionally transposed,
the mask M can be complemented, and C can be cleared of its entries after
it is used in Z = C⊙T but before the C⟨M⟩ = Z assignment. Vectors are
never transposed via the descriptor.

24

Let A⊕B denote the element-wise operator that produces a set union
pattern (like A+B in MATLAB). Any binary operator can be used this way
in GraphBLAS, not just plus. Let A⊗B denote the element-wise operator
that produces a set intersection pattern (like A.*B in MATLAB); any binary
operator can be used this way, not just times.

Reduction of a matrix A to a vector reduces the ith row of A to a scalar
wi. This is like w=sum(A’) since by default, MATLAB reduces down the
columns, not across the rows.

GrB_mxm matrix-matrix multiply C⟨M⟩ = C⊙AB
GrB_vxm vector-matrix multiply wT⟨mT⟩ = wT ⊙ uTA
GrB_mxv matrix-vector multiply w⟨m⟩ = w ⊙Au
GrB_eWiseMult element-wise, C⟨M⟩ = C⊙ (A⊗B)

set intersection w⟨m⟩ = w ⊙ (u⊗ v)
GrB_eWiseAdd element-wise, C⟨M⟩ = C⊙ (A⊕B)

set union w⟨m⟩ = w ⊙ (u⊕ v)
GxB_eWiseUnion element-wise, C⟨M⟩ = C⊙ (A⊕B)

set union w⟨m⟩ = w ⊙ (u⊕ v)
GrB_extract extract submatrix C⟨M⟩ = C⊙A(I,J)

w⟨m⟩ = w ⊙ u(i)
GxB_subassign assign submatrix C(I,J)⟨M⟩ = C(I,J)⊙A

(with submask for C(I,J)) w(i)⟨m⟩ = w(i)⊙ u
GrB_assign assign submatrix C⟨M⟩(I,J) = C(I,J)⊙A

(with mask for C) w⟨m⟩(i) = w(i)⊙ u
GrB_apply apply unary operator C⟨M⟩ = C⊙f(A)

w⟨m⟩ = w⊙f(u)
apply binary operator C⟨M⟩ = C⊙f(A, y)

C⟨M⟩ = C⊙f(x,A)
w⟨m⟩ = w⊙f(u, y)
w⟨m⟩ = w⊙f(x,u)

apply index-unary op C⟨M⟩ = C⊙f(A, i, j, k)
w⟨m⟩ = w⊙f(u, i, 0, k)

GrB_select select entries C⟨M⟩ = C⊙select(A, i, j, k)
w⟨m⟩ = w⊙select(u, i, 0, k)

GrB_reduce reduce to vector w⟨m⟩ = w⊙[⊕jA(:, j)]
reduce to scalar s = s⊙ [⊕ijA(i, j)]

GrB_transpose transpose C⟨M⟩ = C⊙AT

GrB_kronecker Kronecker product C⟨M⟩ = C⊙ kron(A,B)

25

3 Changes in GraphBLAS v10: 32/64 bit in-

tegers

GraphBLAS v10 adds a new feature that improves performance and reduces
memory requirements for GraphBLAS matrices and vectors: the use of any
mix of 32-bit and 64-bit integers in the internal data structures for the
GrB_Matrix, GrB_Vector, and GrB_Scalar (the latter is nominally revised,
but only because SuiteSparse:GraphBLAS stores its GrB_Scalar as a 1-by-1
matrix).

All prior methods work without any modification to the user application,
so v10 is upward-compatible with prior versions of GraphBLAS.

3.1 Controlling the sizes of integers

Different integers are used for different parts of the matrix/vector data struc-
ture. The decision as to which integers to use is determined by the dimensions
and number of entries in the matrix. The decisions can also be modified by
GrB_set and queried by GrB_get. A matrix can have up to three different
kinds of integers. If a matrix is m-by-n with e entries, with default settings:

� if m > 231: 64-bit integers must be used for the row indices of a matrix;
otherwise, 32-bit integers may be used.

� if n > 231: 64-bit integers must be used for the column indices of a
matrix; otherwise, 32-bit integers may be used.

� if e > 232: 64-bit integers must be used for the row/column offsets of a
matrix; otherwise 32-bit integers may be used.

See Section 10.13 for details.

3.2 Passing arrays to/from GraphBLAS

Several of the methods in the GraphBLAS v2.1 C API use plain C arrays of
type uint64_t to pass lists of integers to GraphBLAS. These are extended
to allow any integers arrays to be passed, by adding new methods where
all plain C arrays (including pointers to numerical values for build and
extractTuples) are replaced with GrB_Vectors. The new methods are given

26

a name that matches the method they revised, with a _Vector appended on
the end. All of the new methods are accessible via the polymorphic interface,
using the existing polymorphic name. In the methods below, all I, J, and X

parameters become GrB_Vector objects.

� GrB_Vector_build: build a vector from (I,X) or (I,scalar) tuples.

– GxB_Vector_build_Vector (w, I, X, dup, desc)

(see Section 6.9.8).

– GxB_Vector_build_Scalar_Vector (w, I, scalar, desc)

(see Section 6.9.10).

� GrB_Matrix_build: build a matrix from (I,J,X) or (I,J,scalar) tuples.

– GxB_Matrix_build_Vector (C, I, J, X, dup, desc)

(see Section 6.10.9).

– GxB_Matrix_build_Scalar_Vector (C, I, J, scalar, desc)

(see Section 6.10.11).

� GrB_Vector_extractTuples: extract (I,X) tuples from a vector.

– GxB_Vector_extractTuples_Vector (I, X, v, desc)

(see Section 6.9.16).

� GrB_Matrix_extractTuples: extract (I,J,X) tuples from a matrix.

– GxB_Matrix_extractTuples_Vector (I, J, X, A, desc)

(see Section 6.10.17).

� GrB_assign: C⟨M⟩(I,J) = C(I,J)⊙A

– GxB_Vector_assign_Vector (w, mask, accum, u, I, desc)

(see Section 12.8.2).

– GxB_Matrix_assign_Vector (C, Mask, accum, A, I, J, desc)

(see Section 12.8.4).

– GxB_Col_assign_Vector (C, mask, accum, u, I, j, desc)

(see Section 12.8.6).

27

– GxB_Row_assign_Vector (C, mask, accum, u, i, J, desc)

(see Section 12.8.8).

– GxB_Vector_assign_Scalar_Vector (w, mask, accum, scalar, I, desc)

(see Section 12.8.10).

– GxB_Matrix_assign_Scalar_Vector (C, Mask, accum, scalar, I, J, desc)

(see Section 12.8.12).

� GrB_subassign: C(I,J)⟨M⟩ = C(I,J)⊙A

– GxB_Vector_subassign_Vector (w, mask, accum, u, I, desc)

(see Section 12.9.2).

– GxB_Matrix_subassign_Vector (C, Mask, accum, A, I, J, desc)

(see Section 12.9.4).

– GxB_Col_subassign_Vector (C, mask, accum, u, I, j, desc)

(see Section 12.9.6).

– GxB_Row_subassign_Vector (C, mask, accum, u, i, J, desc)

(see Section 12.9.8).

– GxB_Vector_subassign_Scalar_Vector (w, mask, accum, scalar, I, desc)

(see Section 12.9.10).

– GxB_Matrix_subassign_Scalar_Vector (C, Mask, accum, scalar, I, J, desc)

(see Section 12.9.12).

� GrB_extract: C⟨M⟩ = C⊙A(I,J)

– GxB_Vector_extract_Vector (w, mask, accum, u, I, desc)

(see Section 12.7.2).

– GxB_Matrix_extract_Vector (C, Mask, accum, A, I, J, desc)

(see Section 12.7.4).

– GxB_Col_extract_Vector (w, mask, accum, A, I, j, desc)

(see Section 12.7.6).

In each of the above methods where I, J, and X are GrB_Vector inputs to
the method (all but extractTuples), the vectors can be interpretted in up
to 3 different ways. For the first two ways, suppose extractTuples is used
to extract two lists from a vector I, J, or X: values and indices. Then either

28

of those two lists can then be used by the method. The default is to use the
values, but the indices can be selected by changing the following descriptor
fields:

� GxB_ROWINDEX_LIST: how the GrB_Vector I is intrepretted.

� GxB_COLINDEX_LIST: how the GrB_Vector J is intrepretted.

� GxB_VALUE_LIST: how GrB_Vector X is intrepretted (for GrB_build

only).

These can be set to one of the following values:

� GrB_DEFAULT or GxB_USE_VALUES: use the values of the vector (default).

� GxB_USE_INDICES: use the indices of the vector.

� GxB_IS_STRIDE: use the values, of size 3, for a strided range, or lo:inc:hi
in MATLAB notation. This usage is limited to the I and J vectors (ex-
cept this option may not be used for GrB_build). The vector must
have exactly three entries, lo, hi, and inc, in that order.

3.3 Container methods: loading/unloading data to/from
a matrix or vector

The new methods described in the previous Section 3.2 provide GrB_Vector
inputs and outputs. This section gives an overview of how data is moved be-
tween these opaque objects and user-visible C arrays, using the new load/unload

methods.
See Section 6.12 for all of the details of the new load/unload methods,

using a new Container object.
Methods in the v2.1 GraphBLAS C Specification can be used, but these

methods require a copy (GrB_*_build, GrB_*_extractTuples, GrB_*_import
and GrB_*_export). The following two methods accomplish this task when
the vectors are dense, with all possible entries present.

� GxB_Vector_load: this method moves data in O(1) time from a user-
visible C array into a GrB_Vector. The vector length and type are
revised to match the new data from the C array. Ownership is normally

29

transferred to the GrB_Vector, but this can be revised with a handling
parameter. The C array is passed in as a void * pointer, and its type
is indicated by a GrB_Type parameter. See Section 6.12.1 for details.

� GxB_Vector_unload: this method moves data in O(1) time from a
GrB_Vector into a user-visible C array (assuming the vector has no
pending work; if so, that work is done first). The length of the GrB_Vector
is reduced to zero, to denote that it no longer holds any content. The
vector must be dense; it must have the same number of entries as its
size (that is GrB_Vector_nvals and GrB_Vector_size must return the
same value). The C array is returned as a void * pointer, and its type
is indicated by a GrB_Type parameter. See Section 6.12.2 for details.

To move data between a GrB_Matrix or GrB_Vector in all other cases,
a new GxB_Container object is introduced. This object is non-opaque but
contains opaque objects. Its primary components are five dense GrB_Vectors
that hold the contents of the matrix/vector. The data in these dense vectors
can then be loaded/unloaded via GxB_Vector_load and GxB_Vector_unload.

The following methods operate on the Container object:

� GxB_Container_new: creates a container. (see Section 6.12.3).

� GxB_Container_free: frees a container. (see Section 6.12.4).

� GxB_load_Matrix_from_Container: moves all of the data from a GxB_Container
into a GrB_Matrix in O(1) time. (see Section 6.12.5).

� GxB_load_Vector_from_Container: moves all of the data from a GxB_Container
into a GrB_Vector in O(1) time. (see Section 6.12.6).

� GxB_unload_Matrix_into_Container: moves all of the data from a
GrB_Matrix into a GxB_Container in O(1) time. (see Section 6.12.7).

� GxB_unload_Vector_into_Container: moves all of the data from a
GrB_Vector into a GxB_Container in O(1) time. (see Section 6.12.8).

3.4 Historical methods: pack/unpack

GraphBLAS v5.1.0 (released in June 2021) added a suite of GxB_pack and
GxB_unpackmethods to move data between opaque objects (GrB_Matrix and

30

GrB_Vector) and user-visible C arrays, in O(1) time unless the data format
needed to be revised.

These methods are now declared historical, which means they will be kept
in working order but will no longer be documented. Refer to the GraphBLAS
v9.4.5 User Guide for documentaion for the pack/unpack methods.

In GraphBLAS v10, these methods still pack/unpack their contents into
uint64_t * user arrays. If the matrix has 32-bit integers, this requires a
copy and typecast. Thus, performance will be degraded for existing user
codes that expect O(1) time to pack/unpack their matrices/vectors.

Extending the pack/unpack to handle arbitary C integer arrays would
lead to an explosion in the number of methods in the API, and it would get
worse if other integers are added (16-bit and 128-bit for example). Rather
than extend pack/unpack to handle a wide range of integer types, new meth-
ods using the GxB_Container are introduced instead (see Section 3.3), to
rapidly move data into/out of a GrB_Matrix or GrB_Vector in O(1) time
and space.

31

4 Interfaces to MATLAB, Octave, Python,

Julia, Go, Java, ...

The MATLAB/Octave interface to SuiteSparse:GraphBLAS is included with
this distribution, described in Section 4.1. Python, Julia, Go, and Java
interfaces are available. These are not part of the SuiteSparse:GraphBLAS
distribution. See the links below.

4.1 MATLAB/Octave Interface

An easy-to-use MATLAB/Octave interface for SuiteSparse:GraphBLAS is
available; see the documentation in the GraphBLAS/GraphBLAS folder for de-
tails. Start with the README.md file in that directory. An easy-to-read output
of the MATLAB demos can be found in GraphBLAS/GraphBLAS/demo/html.

The MATLAB/Octave interface adds the @GrB class, which is an opaque
MATLAB/Octave object that contains a GraphBLAS matrix, either double
or single precision (real or complex), boolean, or any of the built-in integer
types. MATLAB/Octave sparse and full matrices can be arbitrarily mixed
with GraphBLAS matrices. The following overloaded operators and methods
all work as you would expect for any matrix. The matrix multiplication A*B

uses the conventional PLUS_TIMES semiring.

A+B A-B A*B A.*B A./B A.\B A.^b A/b C=A(I,J)

-A +A ~A A’ A.’ A&B A|B b\A C(I,J)=A

A~=B A>B A==B A<=B A>=B A<B [A,B] [A;B] A(1:end,1:end)

For a list of overloaded operations and static methods, type methods GrB

in MATLAB/Octave, or help GrB for more details.
Limitations: Some features for MATLAB/Octave sparse matrices are

not yet available for GraphBLAS matrices. Some of these may be added in
future releases.

� GrB matrices with dimension larger than 2^53 do not display properly
in the whos command. The size is displayed correctly with disp or
display.

� Non-blocking mode is not exploited.

� Linear indexing: A(:) for a 2D matrix, and I=find(A).

� Singleton expansion.

32

� Dynamically growing arrays, where C(i)=x can increase the size of C.

� Saturating element-wise binary and unary operators for integers. For
C=A+B with MATLAB uint8 matrices, results saturate if they exceed
255. This is not compatible with a monoid for C=A*B, and thus MAT-
LAB does not support matrix-matrix multiplication with uint8 matri-
ces. In GraphBLAS, uint8 addition acts in a modulo fashion.

� Solvers, so that x=A\b could return a GF(2) solution, for example.

� Sparse matrices with dimension higher than 2.

4.2 Performance of MATLAB versus GraphBLAS

MATLAB R2021a uses SuiteSparse:GraphBLAS as a built-in library, but
uses it only for C=A*B when both A and B are sparse. In prior versions of
MATLAB, C=A*B relied on the SFMULT and SSMULT packages in SuiteSparse,
which are single-threaded (also written by this author). The GraphBLAS
GrB_mxm is up to 30x faster on a 20-core Intel Xeon, compared with C=A*B

in MATLAB R2020b and earlier. With MATLAB R2021a and later, the
performance of C=A*B when using MATLAB sparse matrices is identical to
the performance for GraphBLAS matrices, since the same code is being used
by both (GrB_mxm).

Other methods in GraphBLAS are also faster, some extremely so, but are
not yet exploited as built-in operations MATLAB. In particular, the state-
ment C(M)=A (where M is a logical matrix) takes under a second for a large
sparse problem when using GraphBLAS via its @GrB interface. By stark con-
trast, MATLAB would take about 4 or 5 days, a speedup of about 500,000x.
For a smaller problem, GraphBLAS takes 0.4 seconds while MATLAB takes
28 hours (a speedup of about 250,000x). Both cases use the same statement
with the same syntax (C(M)=A) and compute exactly the same result. Be-
low are the results for n-by-n matrices in GraphBLAS v5.0.6 and MATLAB
R2020a, on a Dell XPS13 laptop (16GB RAM, Intel(R) Core(TM) i7-8565U
CPU @ 1.80GHz with 4 hardware cores). GraphBLAS is using 4 threads.

33

n nnz(C) nnz(M) GraphBLAS (sec) MATLAB (sec) speedup
2,048 20,432 2,048 0.005 0.024 4.7
4,096 40,908 4,096 0.003 0.115 39
8,192 81,876 8,191 0.009 0.594 68

16,384 163,789 16,384 0.009 2.53 273
32,768 327,633 32,767 0.014 12.4 864
65,536 655,309 65,536 0.025 65.9 2,617

131,072 1,310,677 131,070 0.055 276.2 4,986
262,144 2,621,396 262,142 0.071 1,077 15,172
524,288 5,242,830 524,288 0.114 5,855 51,274

1,048,576 10,485,713 1,048,576 0.197 27,196 137,776
2,097,152 20,971,475 2,097,152 0.406 100,799 248,200
4,194,304 41,942,995 4,194,304 0.855 4 to 5 days? 500,000?

The assignment C(I,J)=A in MATLAB, when using @GrB objects, is up
to 1000x faster than the same statement with the same syntax, when using
MATLAB sparse matrices instead. Matrix concatenation C = [A B] is about
17 times faster in GraphBLAS, on a 20-core Intel Xeon. For more details,
see the GraphBLAS/GraphBLAS/demo folder and its contents.

Below is a comparison of other methods in SuiteSparse:GraphBLAS, com-
pared with MATLAB 2021a. SuiteSparse:GraphBLAS: v6.1.4 (Jan 12, 2022),
was used, compiled with gcc 11.2.0. The system is an Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz (20 hardware cores, 40 threads), Ubuntu 20.04,
256GB RAM. Full details appear in the GraphBLAS/GraphBLAS/demo/benchmark
folder. For this matrix, SuiteSparse:GraphBLAS is anywhere from 3x to 17x
faster than the built-in methods in MATLAB. This matrix is not special, but
is typical of the relative performance of many large matrices. Note that two of
these (C=L*S and C=S*R) rely on an older version of SuiteSparse:GraphBLAS
(v3.3.3) built into MATLAB R2021a.

Legend:

S: large input sparse matrix (n-by-n), the GAP-twitter matrix

x: dense vector (1-by-n or n-by-1)

F: dense matrix (4-by-n or n-by-4)

L: 8-by-n sparse matrix, about 1000 entries

R: n-by-8 sparse matrix, about 1000 entries

B: n-by-n sparse matrix, about nnz(S)/10 entries

p,q: random permutation vectors

GAP/GAP-twitter: n: 61.5784 million nnz: 1468.36 million

(run time in seconds):

y=S*x: MATLAB: 22.8012 GrB: 2.4018 speedup: 9.49

y=x*S: MATLAB: 16.1618 GrB: 1.1610 speedup: 13.92

C=S*F: MATLAB: 30.6121 GrB: 9.7052 speedup: 3.15

C=F*S: MATLAB: 26.4044 GrB: 1.5245 speedup: 17.32

C=L*S: MATLAB: 19.1228 GrB: 2.4301 speedup: 7.87

34

C=S*R: MATLAB: 0.0087 GrB: 0.0020 speedup: 4.40

C=S’ MATLAB: 224.7268 GrB: 22.6855 speedup: 9.91

C=S+S: MATLAB: 14.3368 GrB: 1.5539 speedup: 9.23

C=S+B: MATLAB: 15.5600 GrB: 1.5098 speedup: 10.31

C=S(p,q) MATLAB: 95.6219 GrB: 15.9468 speedup: 6.00

4.3 Python Interface

See Michel Pelletier’s Python interface at https://github.com/michelp/pygraphblas;
it also appears at https://anaconda.org/conda-forge/pygraphblas.

See Jim Kitchen and Erik Welch’s (both from Anaconda, Inc.) Python
interface at https://github.com/python-graphblas/python-graphblas (formerly
known as grblas). See also https://anaconda.org/conda-forge/graphblas.

4.4 Julia Interface

The Julia interface is at https://github.com/JuliaSparse/SuiteSparseGraphBLAS.
jl, developed by Will Kimmerer, Abhinav Mehndiratta, Miha Zgubic, and
Viral Shah. Unlike the MATLAB/Octave interface (and like the Python in-
terfaces) the Julia interface can keep pending work (zombies, pending tuples,
jumbled state) in a GrB_Matrix. This makes Python and Julia the best high-
level interfaces for SuiteSparse:GraphBLAS. MATLAB is not as well suited,
since it does not allow inputs to a function or mexFunction to be modified,
so any pending work must be finished before a matrix can be used as input.

4.5 Go Interface

Pascal Costanza (Intel) has a Go interface to GraphBLAS and LAGraph:

� forGraphBLASGo: https://github.com/intel/forGraphBLASGo, which is
almost a complete wrapper for SuiteSparse:GraphBLAS. Documenta-
tion is at https://pkg.go.dev/github.com/intel/forGraphBLASGo.

� forLAGraphGo: https://github.com/intel/forLAGraphGo, which is in progress.
Documentation is at https://pkg.go.dev/github.com/intel/forLAGraphGo.

4.6 Java Interface

Fabian Murariu is working on a Java interface. See
https://github.com/fabianmurariu/graphblas-java-native.

35

https://github.com/michelp/pygraphblas
https://anaconda.org/conda-forge/pygraphblas
https://github.com/python-graphblas/python-graphblas
https://anaconda.org/conda-forge/graphblas
https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl
https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl
https://github.com/intel/forGraphBLASGo
https://pkg.go.dev/github.com/intel/forGraphBLASGo
https://github.com/intel/forLAGraphGo
https://pkg.go.dev/github.com/intel/forLAGraphGo
https://github.com/fabianmurariu/graphblas-java-native

5 GraphBLAS Initialization/Finalization

A user application that directly relies on GraphBLAS must include the
GraphBLAS.h header file:

#include "GraphBLAS.h"

The GraphBLAS.h file defines functions, types, and macros prefixed with
GrB_ and GxB_ that may be used in user applications. The prefix GrB_

denotes items that appear in the official GraphBLAS C API Specification.
The prefix GxB_ refers to SuiteSparse-specific extensions to the GraphBLAS
API.

The GraphBLAS.h file includes all the definitions required to use Graph-
BLAS, including the following macros that can assist a user application in
compiling and using GraphBLAS.

There are two version numbers associated with SuiteSparse:GraphBLAS:
the version of the GraphBLAS C API Specification it conforms to, and the
version of the implementation itself. These can be used in the following
manner in a user application:

#if GxB_SPEC_VERSION >= GxB_VERSION (2,0,3)

... use features in GraphBLAS specification 2.0.3 ...

#else

... only use features in early specifications

#endif

#if GxB_IMPLEMENTATION >= GxB_VERSION (5,2,0)

... use features from version 5.2.0 (or later)

of a specific GraphBLAS implementation

#endif

SuiteSparse:GraphBLAS also defines the following strings with #define.
Refer to the GraphBLAS.h file for details.

Macro purpose
GxB_IMPLEMENTATION_ABOUT this particular implementation, copyright, and URL
GxB_IMPLEMENTATION_DATE the date of this implementation
GxB_SPEC_ABOUT the GraphBLAS specification for this implementation
GxB_SPEC_DATE the date of the GraphBLAS specification
GxB_IMPLEMENTATION_LICENSE the license for this particular implementation

36

Finally, SuiteSparse:GraphBLAS gives itself a unique name of the form
GxB_SUITESPARSE_GRAPHBLAS that the user application can use in #ifdef

tests. This is helpful in case a particular implementation provides non-
standard features that extend the GraphBLAS specification, such as addi-
tional predefined built-in operators, or if a GraphBLAS implementation does
not yet fully implement all of the GraphBLAS specification.

For example, SuiteSparse:GraphBLAS predefines additional built-in op-
erators not in the specification. If the user application wishes to use these
in any GraphBLAS implementation, an #ifdef can control when they are
used. Refer to the examples in the GraphBLAS/Demo folder.

As another example, the GraphBLAS API states that an implementa-
tion need not define the order in which GrB_Matrix_build assembles dupli-
cate tuples in its [I,J,X] input arrays. As a result, no particular ordering
should be relied upon in general. However, SuiteSparse:GraphBLAS does
guarantee an ordering, and this guarantee will be kept in future versions of
SuiteSparse:GraphBLAS as well. Since not all implementations will ensure a
particular ordering, the following can be used to exploit the ordering returned
by SuiteSparse:GraphBLAS.

#ifdef GxB_SUITESPARSE_GRAPHBLAS

// duplicates in I, J, X assembled in a specific order;

// results are well-defined even if op is not associative.

GrB_Matrix_build (C, I, J, X, nvals, op) ;

#else

// duplicates in I, J, X assembled in no particular order;

// results are undefined if op is not associative.

GrB_Matrix_build (C, I, J, X, nvals, op) ;

#endif

5.1 Definitions that modify how GraphBLAS.h behaves

The GxB extensions defined by GraphBLAS.h can be disabled by defining the
GRAPHBLAS_VANILLA token prior to including it:

#define GRAPHBLAS_VANILLA

#include "GraphBLAS.h"

If this is done, all uses of GxB_* methods, objects, and macros will re-
sult in a compile-time error when compiling an application that uses Suite-
Sparse:GraphBLAS. This flag has no effect on the compilation of Suite-

37

Sparse:GraphBLAS itself. It will still include all of its GxB methods and
its extended behavior (highlighted in yellow in this document).

The GraphBLAS C API defines a set of polymorphic methods based on
the _Generic keyword in the C11 language. GraphBLAS.h normally defines
a token GxB_STDC_VERSION, which is by default equal to __STDC_VERSION__

and is determined automatically in GraphBLAS.h. If it is ≥ 201112L, then
C11 is being used and the polymorphic functions (based on _Generic) are
available. It can also be #defined by the user application prior to its
#include "GraphBLAS.h" statement. If a C++ compiler is used to com-
pile the user application then GxB_STDC_VERSION is set to 199001L to denote
C90 (and no _Generic keyword is used).

See GraphBLAS/Demo/Include/graphblas_demo.h for an example usage.

5.2 Overview of GraphBLAS initialization and final-
ization methods

The remainder of this section describes GraphBLAS functions that start or
finalize GraphBLAS, error handling, and the GraphBLAS integer.

GraphBLAS function/type purpose Section
GrB_Index the GraphBLAS integer 5.3
GrB_init start up GraphBLAS 5.4
GrB_getVersion C API supported by the library 5.5
GxB_init start up GraphBLAS with different malloc 5.6
GrB_Info status code returned by GraphBLAS functions 5.7
GrB_error get more details on the last error 5.8
GrB_finalize finish GraphBLAS 5.9

5.3 GrB Index: the GraphBLAS integer

Matrix and vector dimensions and indexing rely on a specific integer, GrB_Index,
which is defined in GraphBLAS.h as

typedef uint64_t GrB_Index ;

Row and column indices of an nrows-by-ncols matrix range from zero
to the nrows-1 for the rows, and zero to ncols-1 for the columns. Indices

38

are zero-based, like C, and not one-based, like MATLAB/Octave. In Suite-
Sparse:GraphBLAS, the largest permitted index value is GrB_INDEX_MAX,
defined as 260 − 1. The largest permitted matrix or vector dimension is
260 (that is, GrB_INDEX_MAX+1). The largest GrB_Matrix that SuiteSparse:
GraphBLAS can construct is thus 260-by-260. An n-by-n matrix A that
size can easily be constructed in practice with O(|A|) memory requirements,
where |A| denotes the number of entries that explicitly appear in the pat-
tern of A. The time and memory required to construct a matrix that large
does not depend on n, since SuiteSparse:GraphBLAS can represent A in hy-
persparse form (see Section 10.10.2). The largest GrB_Vector that can be
constructed is 260-by-1.

Internally, GraphBLAS may store its integer indices using 32-bit integers
(as of GraphBLAS v10.0.0). See Section 10.13 for details.

5.4 GrB init: initialize GraphBLAS

typedef enum

{

GrB_NONBLOCKING = 0, // methods may return with pending computations

GrB_BLOCKING = 1 // no computations are ever left pending

}

GrB_Mode ;

GrB_Info GrB_init // start up GraphBLAS

(

int mode // blocking or non-blocking mode (GrB_Mode)

) ;

GrB_init must be called before any other GraphBLAS operation. It
defines the mode that GraphBLAS will use: blocking or non-blocking. With
blocking mode, all operations finish before returning to the user applica-
tion. With non-blocking mode, operations can be left pending, and are
computed only when needed. Non-blocking mode can be much faster than
blocking mode, by many orders of magnitude in extreme cases. Blocking
mode should be used only when debugging a user application. The mode
cannot be changed once it is set by GrB_init.

GraphBLAS objects are opaque. This allows GraphBLAS to postpone
operations and then do them later in a more efficient manner by rearranging
them and grouping them together. In non-blocking mode, the computations

39

required to construct an opaque GraphBLAS object might not be finished
when the GraphBLAS method or operation returns to the user. However,
user-provided arrays are not opaque, and GraphBLAS methods and opera-
tions that read them (such as GrB_Matrix_build) or write to them (such as
GrB_Matrix_extractTuples) always finish reading them, or creating them,
when the method or operation returns to the user application.

All methods and operations that extract values from a GraphBLAS ob-
ject and return them into non-opaque user arrays always ensure that the
user-visible arrays are fully populated when they return: GrB_*_reduce (to
scalar), GrB_*_nvals, GrB_*_extractElement, and GrB_*_extractTuples.
These functions do not guarantee that the opaque objects they depend on
are finalized. To do that, use GrB_wait instead.

SuiteSparse:GraphBLAS is multithreaded internally, via OpenMP, and
it is also safe to use in a multithreaded user application. See Section 18
for details. User threads must not operate on the same matrices at the
same time, with one exception. Multiple user threads can use the same
matrices or vectors as inputs to GraphBLAS operations or methods, but only
if they have no pending operations (use GrB_wait first). User threads cannot
simultaneously modify a matrix or vector via any GraphBLAS operation or
method.

It is safe to use the internal parallelism in SuiteSparse:GraphBLAS on
matrices, vectors, and scalars that are not yet completed. The library han-
dles this on its own. The GrB_wait function is only needed when a user
application makes multiple calls to GraphBLAS in parallel, from multiple
user threads.

With multiple user threads, exactly one user thread must call GrB_init
before any user thread may call any GrB_* or GxB_* function. When the
user application is finished, exactly one user thread must call GrB_finalize,
after which no user thread may call any GrB_* or GxB_* function. The mode
of a GraphBLAS session can be queried with GrB_get; see Section 10 for
details.

40

5.5 GrB getVersion: determine the C API Version

GrB_Info GrB_getVersion // run-time access to C API version number

(

unsigned int *version, // returns GRB_VERSION

unsigned int *subversion // returns GRB_SUBVERSION

) ;

GraphBLAS defines two compile-time constants that define the version
of the C API Specification that is implemented by the library: GRB_VERSION
and GRB_SUBVERSION. If the user program was compiled with one version of
the library but linked with a different one later on, the compile-time version
check with GRB_VERSION would be stale. GrB_getVersion thus provides a
run-time access of the version of the C API Specification supported by the
library.

5.6 GxB init: initialize with alternate malloc

GrB_Info GxB_init // start up GraphBLAS and also define malloc

(

int mode, // blocking or non-blocking mode (GrB_Mode)

// pointers to memory management functions.

void * (* user_malloc_func) (size_t),

void * (* user_calloc_func) (size_t, size_t),

void * (* user_realloc_func) (void *, size_t),

void (* user_free_func) (void *)

) ;

GxB_init is identical to GrB_init, except that it also redefines the mem-
ory management functions that SuiteSparse:GraphBLAS will use. Giving
the user application control over this is particularly important when using
the GxB_*serialize and GxB_Container methods described in Section 6.11
and 6.12, since they require the user application and GraphBLAS to use
the same memory manager. user_calloc_func and user_realloc_func

are optional, and may be NULL. If NULL, then the user_malloc_func is re-
lied on instead, for all memory allocations. These functions can only be set
once, when GraphBLAS starts. They can be queried using GrB_get (see
Section 10.2). Either GrB_init or GxB_init must be called before any other
GraphBLAS operation, but not both. The functions passed to GxB_init

must be thread-safe. The following usage is identical to GrB_init(mode):

GxB_init (mode, malloc, calloc, realloc, free) ;

41

5.7 GrB Info: status code returned by GraphBLAS

Each GraphBLAS method and operation returns its status to the caller as
its return value, an enumerated type (an enum) called GrB_Info. The first
two values in the following table denote a successful status, the rest are error
codes.

Error value description

GrB_SUCCESS 0 the method or operation was successful
GrB_NO_VALUE 1 the method was successful, but the entry

does not appear in the matrix or vector.
GxB_EXHAUSTED 2 the iterator is exhausted

GrB_UNINITIALIZED_OBJECT -1 object has not been initialized
GrB_NULL_POINTER -2 input pointer is NULL
GrB_INVALID_VALUE -3 generic error code; some value is bad
GrB_INVALID_INDEX -4 a row or column index is out of bounds
GrB_DOMAIN_MISMATCH -5 object domains are not compatible
GrB_DIMENSION_MISMATCH -6 matrix dimensions do not match
GrB_OUTPUT_NOT_EMPTY -7 output matrix already has values in it
GrB_NOT_IMPLEMENTED -8 not implemented in SS:GrB
GrB_ALREADY_SET -9 field already written to
GrB_PANIC -101 unrecoverable error
GrB_OUT_OF_MEMORY -102 out of memory
GrB_INSUFFICIENT_SPACE -103 output array not large enough
GrB_INVALID_OBJECT -104 object is corrupted
GrB_INDEX_OUT_OF_BOUNDS -105 a row or column index is out of bounds
GrB_EMPTY_OBJECT -106 a input scalar has no entry
GxB_JIT_ERROR -7001 JIT compiler error
GxB_OUTPUT_IS_READONLY -7003 output has read-only components

Not all GraphBLAS methods or operations can return all status codes.
In the discussions of each method and operation in this User Guide, most of
the obvious error code returns are not discussed. For example, if a required
input is a NULL pointer, then GrB_NULL_POINTER is returned. Only error
codes specific to the method or that require elaboration are discussed here.
For a full list of the status codes that each GraphBLAS function can return,
refer to The GraphBLAS C API Specification [BMM+17b, BBM+21].

42

5.8 GrB error: get more details on the last error

GrB_Info GrB_error // return a string describing the last error

(

const char **error, // error string

<type> object // a GrB_matrix, GrB_Vector, etc.

) ;

Each GraphBLAS method and operation returns a GrB_Info error code.
The GrB_error function returns additional information on the error for a par-
ticular object in a null-terminated string. The string returned by GrB_error

is never a NULL string, but it may have length zero (with the first entry being
the ’\0’ string-termination value). The string must not be freed or modified.

info = GrB_some_method_here (C, ...) ;

if (! (info == GrB_SUCCESS || info == GrB_NO_VALUE))

{

const char *err ;

GrB_error (&err, C) ;

printf ("info: %d error: %s\n", info, err) ;

}

If the matrix C has no error status, or if the error is not recorded in the
string, an empty non-null string is returned. In particular, out-of-memory
conditions result in an empty string from GrB_error.

SuiteSparse:GraphBLAS reports many helpful details via GrB_error. For
example, if a row or column index is out of bounds, the report will state
what those bounds are. If a matrix dimension is incorrect, the mismatching
dimensions will be provided. Refer to the output of the example programs
in the Demo and Test folder, which intentionally generate errors to illustrate
the use of GrB_error.

The only functions in GraphBLAS that return an error string are func-
tions that have a single input/output argument C, as a GrB_Matrix, GrB_Vector,
GrB_Scalar, or GrB_Descriptor. Methods that create these objects (such as
GrB_Matrix_new) return a NULL object on failure, so these methods cannot
also return an error string in their output argument.

Any subsequent GraphBLAS method that modifies the object C clears
the error string.

Note that GrB_NO_VALUE is an not error, but an informational status.
GrB_*_extractElment(&x,A,i,j), which does x=A(i,j), returns this value
to indicate that A(i,j) is not present in the matrix. That method does not
have an input/output object so it cannot return an error string.

43

5.9 GrB finalize: finish GraphBLAS

GrB_Info GrB_finalize () ; // finish GraphBLAS

GrB_finalize must be called as the last GraphBLAS operation, even af-
ter all calls to GrB_free. All GraphBLAS objects created by the user appli-
cation should be freed first, before calling GrB_finalize since GrB_finalize
will not free those objects. In non-blocking mode, GraphBLAS may leave
some computations as pending. These computations can be safely abandoned
if the user application frees all GraphBLAS objects it has created and then
calls GrB_finalize. When the user application is finished, exactly one user
thread must call GrB_finalize.

44

6 GraphBLAS Objects and their Methods

SuiteSparse:GraphBLAS defines 14 different objects to represent matrices,
vectors, scalars, data types, operators (binary, unary, and index-unary),
monoids, semirings, a descriptor object used to specify optional parameters
that modify the behavior of a GraphBLAS operation, a context object for con-
trolling computational resources, a matrix/vector iterator, and a container
object for moving data in and out of the GraphBLAS opaque matrix/vector
objects.

The GraphBLAS API makes a distinction between methods and opera-
tions. A method is a function that works on a GraphBLAS object, creating
it, destroying it, or querying its contents. An operation (not to be confused
with an operator) acts on matrices and/or vectors in a semiring.

GrB_Type a scalar data type
GrB_UnaryOp a unary operator z = f(x), where z and x are scalars
GrB_BinaryOp a binary operator z = f(x, y), where z, x, and y are scalars
GrB_IndexUnaryOp an index-unary operator
GxB_IndexBinaryOp an index-binary operator
GrB_Monoid an associative and commutative binary operator

and its identity value
GrB_Semiring a monoid that defines the “plus” and a binary operator

that defines the “multiply” for an algebraic semiring
GrB_Matrix a 2D sparse matrix of any type
GrB_Vector a 1D sparse column vector of any type
GrB_Scalar a scalar of any type
GrB_Descriptor a collection of parameters that modify an operation
GxB_Context allocating computational resources
GxB_Iterator a matrix/vector iterator (See Section 14)
GxB_Container for moving data between GraphBLAS and a user application

Most of these objects are implemented in C as an opaque handle, which
is a pointer to a data structure held by GraphBLAS. User applications may
not examine the content of the object directly; instead, they can pass the
handle back to GraphBLAS which will do the work. Assigning one handle
to another is valid but it does not make a copy of the underlying object.

The GxB_Container object is non-opaque but includes opaque objects as
its contents. All other objects are entirely opaque.

45

6.1 The GraphBLAS type: GrB Type

A GraphBLAS GrB_Type defines the type of scalar values that a matrix
or vector contains, and the type of scalar operands for a unary or binary
operator. There are 13 built-in types, and a user application can define any
types of its own as well. The built-in types correspond to built-in types in
C (in the #include files stdbool.h, stdint.h, and complex.h) as listed in
the following table.

GraphBLAS C type description range
type
GrB_BOOL bool Boolean true (1), false (0)
GrB_INT8 int8_t 8-bit signed integer -128 to 127
GrB_INT16 int16_t 16-bit integer −215 to 215 − 1
GrB_INT32 int32_t 32-bit integer −231 to 231 − 1
GrB_INT64 int64_t 64-bit integer −263 to 263 − 1
GrB_UINT8 uint8_t 8-bit unsigned integer 0 to 255
GrB_UINT16 uint16_t 16-bit unsigned integer 0 to 216 − 1
GrB_UINT32 uint32_t 32-bit unsigned integer 0 to 232 − 1
GrB_UINT64 uint64_t 64-bit unsigned integer 0 to 264 − 1
GrB_FP32 float 32-bit IEEE 754 -Inf to +Inf

GrB_FP64 double 64-bit IEEE 754 -Inf to +Inf

GxB_FC32 float complex 32-bit complex -Inf to +Inf

GxB_FC64 double complex 64-bit complex -Inf to +Inf

The C11 definitions of float complex and double complex are not al-
ways available. The GraphBLAS.h header defines them as GxB_FC32_t and
GxB_FC64_t, respectively.

The user application can also define new types based on any typedef in
the C language whose values are held in a contiguous region of memory of
fixed size. For example, a user-defined GrB_Type could be created to hold any
C struct whose content is self-contained. A C struct containing pointers
might be problematic because GraphBLAS would not know to dereference
the pointers to traverse the entire “scalar” entry, but this can be done if the
objects referenced by these pointers are not moved. A user-defined complex
type with real and imaginary types can be defined, or even a “scalar” type
containing a fixed-sized dense matrix (see Section 6.1.1). The possibilities are
endless. GraphBLAS can create and operate on sparse matrices and vectors
in any of these types, including any user-defined ones. For user-defined types,
GraphBLAS simply moves the data around itself (via memcpy), and then

46

passes the values back to user-defined functions when it needs to do any
computations on the type. The next sections describe the methods for the
GrB_Type object:

GraphBLAS function purpose Section
GrB_Type_new create a user-defined type 6.1.1
GxB_Type_new create a user-defined type, with name and definition 6.1.2
GrB_Type_wait wait for a user-defined type 6.1.3
GxB_Type_from_name return the type from its name 6.1.4
GrB_Type_free free a user-defined type 6.1.5
GrB_get get properties of a type 10.3
GrB_set set the type name/definitition 10.3

6.1.1 GrB Type new: create a user-defined type

GrB_Info GrB_Type_new // create a new GraphBLAS type

(

GrB_Type *type, // handle of user type to create

size_t sizeof_ctype // size = sizeof (ctype) of the C type

) ;

GrB_Type_new creates a new user-defined type. The type is a handle, or
a pointer to an opaque object. The handle itself must not be NULL on input,
but the content of the handle can be undefined. On output, the handle
contains a pointer to a newly created type. The ctype is the type in C
that will be used to construct the new GraphBLAS type. It can be either
a built-in C type, or defined by a typedef. The second parameter should
be passed as sizeof(ctype). The only requirement on the C type is that
sizeof(ctype) is valid in C, and that the type reside in a contiguous block of
memory so that it can be moved with memcpy. For example, to create a user-
defined type called Complex for double-precision complex values using the
C11 double complex type, the following can be used. A complete example
can be found in the usercomplex.c and usercomplex.h files in the Demo

folder.

#include <math.h>

#include <complex.h>

GrB_Type Complex ;

GrB_Type_new (&Complex, sizeof (double complex)) ;

To demonstrate the flexibility of the GrB_Type, consider a “scalar” con-
sisting of 4-by-4 floating-point matrix and a string. This type might be useful

47

for the 4-by-4 translation/rotation/scaling matrices that arise in computer
graphics, along with a string containing a description or even a regular ex-
pression that can be parsed and executed in a user-defined operator. All that
is required is a fixed-size type, where sizeof(ctype) is a constant.

typedef struct

{

float stuff [4][4] ;

char whatstuff [64] ;

}

wildtype ;

GrB_Type WildType ;

GrB_Type_new (&WildType, sizeof (wildtype)) ;

With this type a sparse matrix can be created in which each entry con-
sists of a 4-by-4 dense matrix stuff and a 64-character string whatstuff.
GraphBLAS treats this 4-by-4 as a “scalar.” Any GraphBLAS method or
operation that simply moves data can be used with this type without any
further information from the user application. For example, entries of this
type can be assigned to and extracted from a matrix or vector, and matrices
containing this type can be transposed. A working example (wildtype.c
in the Demo folder) creates matrices and multiplies them with a user-defined
semiring with this type.

Performing arithmetic on matrices and vectors with user-defined types
requires operators to be defined. Refer to Section 17.5 for more details on
these example user-defined types.

User defined types created by GrB_Type_new will not work with the JIT;
use GxB_Type_new instead.

6.1.2 GxB Type new: create a user-defined type (with name and
definition)

GrB_Info GxB_Type_new // create a new named GraphBLAS type

(

GrB_Type *type, // handle of user type to create

size_t sizeof_ctype, // size = sizeof (ctype) of the C type

const char *type_name, // name of the type (max 128 characters)

const char *type_defn // typedef for the type (no max length)

) ;

GxB_Type_new creates a type with a name and definition that are known
to GraphBLAS, as strings. The type_name is any valid string (max length of

48

128 characters, including the required null-terminating character) that may
appear as the name of a C type created by a C typedef statement. It must
not contain any white-space characters. For example, to create a type of size
16*4+1 = 65 bytes, with a 4-by-4 dense float array and a 32-bit integer:

typedef struct { float x [4][4] ; int color ; } myquaternion ;

GrB_Type MyQtype ;

GxB_Type_new (&MyQtype, sizeof (myquaternion), "myquaternion",

"typedef struct { float x [4][4] ; int color ; } myquaternion ;") ;

The type_name and type_defn are both null-terminated strings. The
two strings are optional, but are required to enable the JIT compilation of
kernels that use this type. At most GxB_MAX_NAME_LEN (128) characters are
accessed in type_name; characters beyond that limit are silently ignored.

If the sizeof_ctype is zero, and the strings are valid, a JIT kernel is
compiled just to determine the size of the type. This is feature useful for
interfaces in languages other than C, which could create valid strings for C
types but would not have a reliable way to determine the size of the type.

The above example is identical to the following usage, except that GrB_Type_new
requires sizeof_ctype to be nonzero, and equal to the size of the C type.

typedef struct { float x [4][4] ; int color ; } myquaternion ;

GrB_Type MyQtype ;

GxB_Type_new (&MyQtype, sizeof (myquaternion)) ;

GrB_set (MyQtype, "myquaternion", GxB_JIT_C_NAME) ;

GrB_set (MyQtype, "typedef struct { float x [4][4] ; int color ; } myquaternion ;"

GxB_JIT_C_DEFINITION) ;

To avoid name collisions with LAGraph and GraphBLAS, avoid type
names that start with LG_ and gb_.

6.1.3 GrB Type wait: wait for a type

GrB_Info GrB_wait // wait for a user-defined type

(

GrB_Type type, // type to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined type, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that type is valid.

49

6.1.4 GxB Type from name: return the type from its name

GrB_Info GxB_Type_from_name // return the built-in GrB_Type from a name

(

GrB_Type *type, // built-in type, or NULL if user-defined

const char *type_name // array of size at least GxB_MAX_NAME_LEN

) ;

Returns the built-in type from the corresponding name of the type. The
following examples both return type as GrB_BOOL.

GxB_Type_from_name (&type, "bool") ;

GxB_Type_from_name (&type, "GrB_BOOL") ;

If the name is from a user-defined type, the type is returned as NULL. This
is not an error condition. The user application must itself do this translation
since GraphBLAS does not keep a registry of all user-defined types.

With this function, a user application can manage the translation for both
built-in types and its own user-defined types, as in the following example.

typedef struct { double x ; char stuff [16] ; } myfirsttype ;

typedef struct { float z [4][4] ; int color ; } myquaternion ;

GrB_Type MyType1, MyQType ;

GxB_Type_new (&MyType1, sizeof (myfirsttype), "myfirsttype",

"typedef struct { double x ; char stuff [16] ; } myfirsttype ;") ;

GxB_Type_new (&MyQType, sizeof (myquaternion), "myquaternion",

"typedef struct { float z [4][4] ; int color ; } myquaternion ;") ;

GrB_Matrix A ;

// ... create a matrix A of some built-in or user-defined type

// later on, to query the type of A:

size_t typesize ;

GrB_Scalar_new (s, GrB_UINT64) ;

GrB_get (type, s, GrB_SIZE) ;

GrB_Scalar_extractElement (&typesize, GrB_UINT64) ;

GrB_Type atype ;

char atype_name [GxB_MAX_NAME_LEN] ;

GrB_get (A, atype_name, GrB_EL_TYPE_STRING) ;

GxB_Type_from_name (&atype, atype_name) ;

if (atype == NULL)

{

// This is not yet an error. It means that A has a user-defined type.

if ((strcmp (atype_name, "myfirsttype")) == 0) atype = MyType1 ;

50

else if ((strcmp (atype_name, "myquaternion")) == 0) atype = MyQType ;

else { ... this is now an error ... the type of A is unknown. }

}

6.1.5 GrB Type free: free a user-defined type

GrB_Info GrB_free // free a user-defined type

(

GrB_Type *type // handle of user-defined type to free

) ;

GrB_Type_free frees a user-defined type. Either usage:

GrB_Type_free (&type) ;

GrB_free (&type) ;

frees the user-defined type and sets type to NULL. It safely does nothing if
passed a NULL handle, or if type == NULL on input.

It is safe to attempt to free a built-in type. SuiteSparse:GraphBLAS
silently ignores the request and returns GrB_SUCCESS. A user-defined type
should not be freed until all operations using the type are completed. Suite-
Sparse:GraphBLAS attempts to detect this condition but it must query a
freed object in its attempt. This is hazardous and not recommended. Oper-
ations on such objects whose type has been freed leads to undefined behavior.

It is safe to first free a type, and then a matrix of that type, but after the
type is freed the matrix can no longer be used. The only safe thing that can
be done with such a matrix is to free it.

The function signature of GrB_Type_free uses the generic name GrB_free,
which can free any GraphBLAS object. See Section 6.17 details. GraphBLAS
includes many such generic functions. When describing a specific variation,
a function is described with its specific name in this User Guide (such as
GrB_Type_free). When discussing features applicable to all specific forms,
the generic name is used instead (such as GrB_free).

51

6.2 GraphBLAS unary operators: GrB UnaryOp, z =
f(x)

A unary operator is a scalar function of the form z = f(x). The domain
(type) of z and x need not be the same.

In the notation in the tables below, T is any of the 13 built-in types and
is a place-holder for BOOL, INT8, UINT8, ... FP32, FP64, FC32, or FC64. For
example, GrB_AINV_INT32 is a unary operator that computes z=-x for two
values x and z of type GrB_INT32.

The notation R refers to any real type (all but FC32 and FC64), I refers to
any integer type (INT* and UINT*), F refers to any real or complex floating
point type (FP32, FP64, FC32, or FC64), Z refers to any complex floating
point type (FC32 or FC64), and N refers to INT32 or INT64.

The logical negation operator GrB_LNOT only works on Boolean types.
The GxB_LNOT_R functions operate on inputs of type R, implicitly typecast-
ing their input to Boolean and returning result of type R, with a value 1
for true and 0 for false. The operators GxB_LNOT_BOOL and GrB_LNOT are
identical.

Unary operators for all types
GraphBLAS name types (domains) z = f(x) description
GxB_ONE_T T → T z = 1 one
GrB_IDENTITY_T T → T z = x identity
GrB_AINV_T T → T z = −x additive inverse
GrB_MINV_T T → T z = 1/x multiplicative inverse

Unary operators for real and integer types
GraphBLAS name types (domains) z = f(x) description
GrB_ABS_T R → R z = |x| absolute value
GrB_LNOT bool → bool z = ¬x logical negation
GxB_LNOT_R R → R z = ¬(x ̸= 0) logical negation
GrB_BNOT_I I → I z = ¬x bitwise negation

Index-based unary operators for any type (including user-defined)
GraphBLAS name types (domains) z = f(aij) description
GxB_POSITIONI_N → N z = i row index (0-based)
GxB_POSITIONI1_N → N z = i+ 1 row index (1-based)
GxB_POSITIONJ_N → N z = j column index (0-based)
GxB_POSITIONJ1_N → N z = j + 1 column index (1-based)

52

Unary operators for floating-point types (real and complex)
GraphBLAS name types (domains) z = f(x) description

GxB_SQRT_F F → F z =
√
(x) square root

GxB_LOG_F F → F z = loge(x) natural logarithm
GxB_EXP_F F → F z = ex natural exponent
GxB_LOG10_F F → F z = log10(x) base-10 logarithm
GxB_LOG2_F F → F z = log2(x) base-2 logarithm
GxB_EXP2_F F → F z = 2x base-2 exponent
GxB_EXPM1_F F → F z = ex − 1 natural exponent - 1
GxB_LOG1P_F F → F z = log(x+ 1) natural log of x+ 1
GxB_SIN_F F → F z = sin(x) sine
GxB_COS_F F → F z = cos(x) cosine
GxB_TAN_F F → F z = tan(x) tangent

GxB_ASIN_F F → F z = sin−1(x) inverse sine
GxB_ACOS_F F → F z = cos−1(x) inverse cosine
GxB_ATAN_F F → F z = tan−1(x) inverse tangent
GxB_SINH_F F → F z = sinh(x) hyperbolic sine
GxB_COSH_F F → F z = cosh(x) hyperbolic cosine
GxB_TANH_F F → F z = tanh(x) hyperbolic tangent

GxB_ASINH_F F → F z = sinh−1(x) inverse hyperbolic sine

GxB_ACOSH_F F → F z = cosh−1(x) inverse hyperbolic cosine

GxB_ATANH_F F → F z = tanh−1(x) inverse hyperbolic tangent
GxB_SIGNUM_F F → F z = sgn(x) sign, or signum function
GxB_CEIL_F F → F z = ⌈x⌉ ceiling function
GxB_FLOOR_F F → F z = ⌊x⌋ floor function
GxB_ROUND_F F → F z = round(x) round to nearest
GxB_TRUNC_F F → F z = trunc(x) round towards zero
GxB_ISINF_F F → bool z = isinf(x) true if ±∞
GxB_ISNAN_F F → bool z = isnan(x) true if NaN
GxB_ISFINITE_F F → bool z = isfinite(x) true if finite

Unary operators for floating-point types (real only)
GraphBLAS name types (domains) z = f(x) description
GxB_LGAMMA_R R → R z = log(|Γ(x)|) log of gamma function
GxB_TGAMMA_R R → R z = Γ(x) gamma function
GxB_ERF_R R → R z = erf(x) error function
GxB_ERFC_R R → R z = erfc(x) complimentary error function
GxB_CBRT_R R → R z = x1/3 cube root
GxB_FREXPX_R R → R z = frexpx(x) normalized fraction
GxB_FREXPE_R R → R z = frexpe(x) normalized exponent

53

Unary operators for complex types
GraphBLAS name types (domains) z = f(x) description
GxB_CONJ_Z Z → Z z = x complex conjugate
GxB_ABS_Z Z → F z = |x| absolute value
GxB_CREAL_Z Z → F z = real(x) real part
GxB_CIMAG_Z Z → F z = imag(x) imaginary part
GxB_CARG_Z Z → F z = carg(x) angle

Built-in index-based unary operators return the row or column index of
an entry. For a matrix z = f(aij) returns z = i or z = j, or +1 for 1-based
indices. The latter is useful in the MATLAB/Octave interface, where row
and column indices are 1-based. When applied to a vector, j is always zero,
and i is the index in the vector. These built-in unary operators come in two
types: INT32 and INT64, which is the type of the output, z. The functions
are agnostic to the type of their inputs; they only depend on the position
of the entries, not their values. User-defined index-based operators cannot
be defined by GrB_UnaryOp_new; use GrB_IndexUnaryOp_new instead; see
Section 6.4.

GxB_FREXPX and GxB_FREXPE return the mantissa and exponent, respec-
tively, from the C11 frexp function. The exponent is returned as a floating-
point value, not an integer.

The operators GxB_EXPM1_FC* and GxB_LOG1P_FC* for complex types are
currently not accurate. They will be revised in a future version.

The functions casin, casinf, casinh, and casinhf provided by Mi-
crosoft Visual Studio for computing sin−1(x) and sinh−1(x) when x is complex
do not compute the correct result. Thus, the unary operators GxB_ASIN_FC32,
GxB_ASIN_FC64 GxB_ASINH_FC32, and GxB_ASINH_FC64 do not work prop-
erly if the MS Visual Studio compiler is used. These functions work properly
if the gcc, icc, or clang compilers are used on Linux or MacOS.

Integer division by zero normally terminates an application, but this is
avoided in SuiteSparse:GraphBLAS. For details, see the binary GrB_DIV_T
operators.

SPEC: The definition of integer division by zero is an extension to the
specification.

The next sections define the following methods for the GrB_UnaryOp ob-
ject:

54

GraphBLAS function purpose Section
GrB_UnaryOp_new create a user-defined unary operator 6.2.1
GxB_UnaryOp_new create a named user-defined unary operator 6.2.2
GrB_UnaryOp_wait wait for a user-defined unary operator 6.2.3
GrB_UnaryOp_free free a user-defined unary operator 6.2.4
GrB_get get properties of an operator 10.4
GrB_set set the operator name/definition 10.4

6.2.1 GrB UnaryOp new: create a user-defined unary operator

GrB_Info GrB_UnaryOp_new // create a new user-defined unary operator

(

GrB_UnaryOp *unaryop, // handle for the new unary operator

void *function, // pointer to the unary function

GrB_Type ztype, // type of output z

GrB_Type xtype // type of input x

) ;

GrB_UnaryOp_new creates a new unary operator. The new operator is
returned in the unaryop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new unary operator.

The two types xtype and ztype are the GraphBLAS types of the input
x and output z of the user-defined function z = f(x). These types may be
built-in types or user-defined types, in any combination. The two types need
not be the same, but they must be previously defined before passing them
to GrB_UnaryOp_new.

The function argument to GrB_UnaryOp_new is a pointer to a user-
defined function with the following signature:

void (*f) (void *z, const void *x) ;

When the function f is called, the arguments z and x are passed as
(void *) pointers, but they will be pointers to values of the correct type,
defined by ztype and xtype, respectively, when the operator was created.

NOTE: The pointers passed to a user-defined operator may not be
unique. That is, the user function may be called with multiple pointers
that point to the same space, such as when z=f(z,y) is to be computed by
a binary operator, or z=f(z) for a unary operator. Any parameters passed
to the user-callable function may be aliased to each other.

55

6.2.2 GxB UnaryOp new: create a named user-defined unary opera-
tor

GrB_Info GxB_UnaryOp_new // create a new user-defined unary operator

(

GrB_UnaryOp *unaryop, // handle for the new unary operator

GxB_unary_function function, // pointer to the unary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x

const char *unop_name, // name of the user function

const char *unop_defn // definition of the user function

) ;

Creates a named GrB_UnaryOp. Only the first 127 characters of unop_name
are used. The unop_defn is a string containing the entire function itself. For
example:

void square (double *z, double *x) { (*z) = (*x) * (*x) ; } ;

...

GrB_Type Square ;

GxB_UnaryOp_new (&Square, square, GrB_FP64, GrB_FP64, "square",

"void square (double *z, double *x) { (*z) = (*x) * (*x) ; } ;") ;

The two strings unop_name and unop_defn are optional, but are required
to enable the JIT compilation of kernels that use this operator.

If JIT compilation is enabled, or if the corresponding JIT kernel has been
copied into the PreJIT folder, the function may be NULL. In this case, a JIT
kernel is compiled that contains just the user-defined function. If the JIT is
disabled and the function is NULL, this method returns GrB_NULL_POINTER.

The above example is identical to the following usage, except that GrB_UnaryOp_new
requires a non-NULL function pointer.

void square (double *z, double *x) { (*z) = (*x) * (*x) ; } ;

...

GrB_Type Square ;

GrB_UnaryOp_new (&Square, square, GrB_FP64, GrB_FP64) ;

GrB_set (Square, "square", GxB_JIT_C_NAME) ;

GrB_set (Square, "void square (double *z, double *x) { (*z) = (*x) * (*x) ; } ;",

GxB_JIT_C_DEFINITION) ;

To avoid name collisions with LAGraph and GraphBLAS, avoid function
names that start with LG_ and gb_.

56

6.2.3 GrB UnaryOp wait: wait for a unary operator

GrB_Info GrB_wait // wait for a user-defined unary operator

(

GrB_UnaryOp unaryop, // unary operator to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined unary operator, a GraphBLAS library may
choose to exploit non-blocking mode to delay its creation. Currently, Suite-
Sparse:GraphBLAS currently does nothing except to ensure that the unaryop
is valid.

6.2.4 GrB UnaryOp free: free a user-defined unary operator

GrB_Info GrB_free // free a user-created unary operator

(

GrB_UnaryOp *unaryop // handle of unary operator to free

) ;

GrB_UnaryOp_free frees a user-defined unary operator. Either usage:

GrB_UnaryOp_free (&unaryop) ;

GrB_free (&unaryop) ;

frees the unaryop and sets unaryop to NULL. It safely does nothing if passed
a NULL handle, or if unaryop == NULL on input. It does nothing at all if
passed a built-in unary operator.

57

6.3 GraphBLAS binary operators: GrB BinaryOp, z =
f(x, y)

A binary operator is a scalar function of the form z = f(x, y). The types of
z, x, and y need not be the same. The built-in binary operators are listed
in the tables below. The notation T refers to any of the 13 built-in types,
but two of those types are SuiteSparse extensions (GxB_FC32 and GxB_FC64).
For those types, the operator name always starts with GxB, not GrB). The
notation R refers to any real type (all but FC32 and FC64).

The six GxB_IS* comparators and the GxB_* logical operators all return
a result one for true and zero for false, in the same domain T or R as their
inputs. These six comparators are useful as “multiply” operators for creating
semirings with non-Boolean monoids.

Binary operators for all 13 types
GraphBLAS name types (domains) z = f(x, y) description
GrB_FIRST_T T × T → T z = x first argument
GrB_SECOND_T T × T → T z = y second argument
GxB_ANY_T T × T → T z = x or y pick x or y arbitrarily
GrB_ONEB_T T × T → T z = 1 one
GxB_PAIR_T T × T → T z = 1 one (historical)
GrB_PLUS_T T × T → T z = x+ y addition
GrB_MINUS_T T × T → T z = x− y subtraction
GxB_RMINUS_T T × T → T z = y − x reverse subtraction
GrB_TIMES_T T × T → T z = xy multiplication
GrB_DIV_T T × T → T z = x/y division
GxB_RDIV_T T × T → T z = y/x reverse division
GxB_POW_T T × T → T z = xy power
GxB_ISEQ_T T × T → T z = (x == y) equal
GxB_ISNE_T T × T → T z = (x ̸= y) not equal

The GxB_POW_* operators for real types do not return a complex result,
and thus z = f(x, y) = xy is undefined if x is negative and y is not an integer.
To compute a complex result, use GxB_POW_FC32 or GxB_POW_FC64.

Operators that require the domain to be ordered (MIN, MAX, less-than,
greater-than, and so on) are not defined for complex types. These are listed
in the following table:

58

Binary operators for all non-complex types
GraphBLAS name types (domains) z = f(x, y) description
GrB_MIN_R R×R → R z = min(x, y) minimum
GrB_MAX_R R×R → R z = max(x, y) maximum
GxB_ISGT_R R×R → R z = (x > y) greater than
GxB_ISLT_R R×R → R z = (x < y) less than
GxB_ISGE_R R×R → R z = (x ≥ y) greater than or equal
GxB_ISLE_R R×R → R z = (x ≤ y) less than or equal
GxB_LOR_R R×R → R z = (x ̸= 0) ∨ (y ̸= 0) logical OR
GxB_LAND_R R×R → R z = (x ̸= 0) ∧ (y ̸= 0) logical AND
GxB_LXOR_R R×R → R z = (x ̸= 0) ⊻ (y ̸= 0) logical XOR

Another set of six kinds of built-in comparators have the form T ×
T →bool. Note that when T is bool, the six operators give the same results
as the six GxB_IS*_BOOL operators in the table above. These six compara-
tors are useful as “multiply” operators for creating semirings with Boolean
monoids.

Binary comparators for all 13 types
GraphBLAS name types (domains) z = f(x, y) description
GrB_EQ_T T × T →bool z = (x == y) equal
GrB_NE_T T × T →bool z = (x ̸= y) not equal

Binary comparators for non-complex types
GraphBLAS name types (domains) z = f(x, y) description
GrB_GT_R R×R →bool z = (x > y) greater than
GrB_LT_R R×R →bool z = (x < y) less than
GrB_GE_R R×R →bool z = (x ≥ y) greater than or equal
GrB_LE_R R×R →bool z = (x ≤ y) less than or equal

GraphBLAS has four built-in binary operators that operate purely in the
Boolean domain. The first three are identical to the GxB_L*_BOOL operators
described above, just with a shorter name. The GrB_LXNOR operator is the
same as GrB_EQ_BOOL.

Binary operators for the boolean type only
GraphBLAS name types (domains) z = f(x, y) description
GrB_LOR bool × bool → bool z = x ∨ y logical OR
GrB_LAND bool × bool → bool z = x ∧ y logical AND
GrB_LXOR bool × bool → bool z = x ⊻ y logical XOR
GrB_LXNOR bool × bool → bool z = ¬(x ⊻ y) logical XNOR

59

The following operators are defined for real floating-point types only
(GrB_FP32 and GrB_FP64). They are identical to the C11 functions of the
same name. The last one in the table constructs the corresponding complex
type.

Binary operators for the real floating-point types only
GraphBLAS name types (domains) z = f(x, y) description
GxB_ATAN2_F F × F → F z = tan−1(y/x) 4-quadrant arc tangent

GxB_HYPOT_F F × F → F z =
√

x2 + y2 hypotenuse
GxB_FMOD_F F × F → F C11 fmod

GxB_REMAINDER_F F × F → F C11 remainder

GxB_LDEXP_F F × F → F C11 ldexp

GxB_COPYSIGN_F F × F → F C11 copysign

GxB_CMPLX_F F × F → Z z = x+ y × i complex from real & imag

Eight bitwise operators are predefined for signed and unsigned integers.

Binary operators for signed and unsigned integers
GraphBLAS name types (domains) z = f(x, y) description
GrB_BOR_I I × I → I z=x|y bitwise logical OR
GrB_BAND_I I × I → I z=x&y bitwise logical AND
GrB_BXOR_I I × I → I z=x^y bitwise logical XOR
GrB_BXNOR_I I × I → I z=~(x^y) bitwise logical XNOR
GxB_BGET_I I × I → I get bit y of x
GxB_BSET_I I × I → I set bit y of x
GxB_BCLR_I I × I → I clear bit y of x
GxB_BSHIFT_I I×int8→ I bit shift

There are two sets of built-in comparators in SuiteSparse:GraphBLAS,
but they are not redundant. They are identical except for the type (domain)
of their output, z. The GrB_EQ_T and related operators compare their inputs
of type T and produce a Boolean result of true or false. The GxB_ISEQ_T and
related operators compute the same thing and produce a result with same
type T as their input operands, returning one for true or zero for false. The
IS* comparators are useful when combining comparators with other non-
Boolean operators. For example, a PLUS-ISEQ semiring counts how many
terms are true. With this semiring, matrix multiplication C = AB for two
weighted undirected graphs A and B computes cij as the number of edges
node i and j have in common that have identical edge weights. Since the
output type of the “multiplier” operator in a semiring must match the type

60

of its monoid, the Boolean EQ cannot be combined with a non-Boolean PLUS

monoid to perform this operation.
Likewise, SuiteSparse:GraphBLAS has two sets of logical OR, AND, and

XOR operators. Without the _T suffix, the three operators GrB_LOR, GrB_LAND,
and GrB_LXOR operate purely in the Boolean domain, where all input and
output types are GrB_BOOL. The second set (GxB_LOR_T GxB_LAND_T and
GxB_LXOR_T) provides Boolean operators to all 11 real domains, implicitly
typecasting their inputs from type T to Boolean and returning a value of
type T that is 1 for true or zero for false. The set of GxB_L*_T operators are
useful since they can be combined with non-Boolean monoids in a semiring.

Floating-point operations follow the IEEE 754 standard. Thus, comput-
ing x/0 for a floating-point x results in +Inf if x is positive, -Inf if x is
negative, and NaN if x is zero. The application is not terminated. How-
ever, integer division by zero normally terminates an application. Suite-
Sparse:GraphBLAS avoids this by adopting the same rules as MATLAB,
which are analogous to how the IEEE standard handles floating-point di-
vision by zero. For integers, when x is positive, x/0 is the largest positive
integer, for negative x it is the minimum integer, and 0/0 results in zero.
For example, for an integer x of type GrB_INT32, 1/0 is 231 − 1 and (-1)/0 is
−231. Refer to Section 6.1 for a list of integer ranges.

6.3.1 GraphBLAS binary operators based on index binary oper-
ators

Eight binary operators based on underlying index binary operators are pre-
defined. They differ when used in a semiring and when used in GrB_eWise*

and GrB_apply. These index-based binary operators cannot be used in
GrB_build, nor can they be used as the accum operator for any operation.

The built-in index-based binary operators do not depend on the type or
numerical value of their inputs, just their position in a matrix or vector.
For a vector, j is always 0, and i is the index into the vector. There are
two types N available: INT32 and INT64, which is the type of the output z.
User-defined index-based operators are not defined by GrB_BinaryOp_new,
but by GxB_BinaryOp_new_IndexOp instead. See Section 6.5 for details.

61

Index-based binary operators for any type (including user-defined)
when used as a multiplicative operator in a semiring

GraphBLAS name types (domains) z = f(aik, bkj) description
GxB_FIRSTI_N → N z = i row index of aik (0-based)
GxB_FIRSTI1_N → N z = i+ 1 row index of aik (1-based)
GxB_FIRSTJ_N → N z = k column index of aik (0-based)
GxB_FIRSTJ1_N → N z = k + 1 column index of aik (1-based)
GxB_SECONDI_N → N z = k row index of bkj (0-based)
GxB_SECONDI1_N → N z = k + 1 row index of bkj (1-based)
GxB_SECONDJ_N → N z = j column index of bkj (0-based)
GxB_SECONDJ1_N → N z = j + 1 column index of bkj (1-based)

Index-based binary operators for any type (including user-defined)
when used in all other methods

GraphBLAS name types (domains) z = f(aij , bij) description
GxB_FIRSTI_N → N z = i row index of aij (0-based)
GxB_FIRSTI1_N → N z = i+ 1 row index of aij (1-based)
GxB_FIRSTJ_N → N z = j column index of aij (0-based)
GxB_FIRSTJ1_N → N z = j + 1 column index of aij (1-based)
GxB_SECONDI_N → N z = i row index of bij (0-based)
GxB_SECONDI1_N → N z = i+ 1 row index of bij (1-based)
GxB_SECONDJ_N → N z = j column index of bij (0-based)
GxB_SECONDJ1_N → N z = j + 1 column index of bij (1-based)

Finally, one special binary operator can only be used as input to GrB_Matrix_build
or GrB_Vector_build: the GxB_IGNORE_DUP operator. If dup is NULL, any
duplicates in the GrB*build methods result in an error. If dup is the special
binary operator GxB_IGNORE_DUP, then any duplicates are ignored. If dupli-
cates appear, the last one in the list of tuples is taken and the prior ones
ignored. This is not an error.

The next sections define the following methods for the GrB_BinaryOp

object:

GraphBLAS function purpose Section
GrB_BinaryOp_new create a user-defined binary operator 6.3.2
GxB_BinaryOp_new create a named user-defined binary operator 6.3.3
GrB_BinaryOp_wait wait for a user-defined binary operator 6.3.4
GrB_BinaryOp_free free a user-defined binary operator 6.3.5
GrB_get get properties of an operator 10.6
GrB_set set the operator name/definition 10.6

62

6.3.2 GrB BinaryOp new: create a user-defined binary operator

GrB_Info GrB_BinaryOp_new

(

GrB_BinaryOp *binaryop, // handle for the new binary operator

void *function, // pointer to the binary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x

GrB_Type ytype // type of input y

) ;

GrB_BinaryOp_new creates a new binary operator. The new operator is
returned in the binaryop handle, which must not be NULL on input. On
output, its contents contains a pointer to the new binary operator.

The three types xtype, ytype, and ztype are the GraphBLAS types of
the inputs x and y, and output z of the user-defined function z = f(x, y).
These types may be built-in types or user-defined types, in any combination.
The three types need not be the same, but they must be previously defined
before passing them to GrB_BinaryOp_new.

The final argument to GrB_BinaryOp_new is a pointer to a user-defined
function with the following signature:

void (*f) (void *z, const void *x, const void *y) ;

When the function f is called, the arguments z, x, and y are passed as
(void *) pointers, but they will be pointers to values of the correct type,
defined by ztype, xtype, and ytype, respectively, when the operator was
created.

NOTE: SuiteSparse:GraphBLAS may call the function with the pointers
z and x equal to one another, in which case z=f(z,y) should be computed.
Future versions may use additional pointer aliasing.

63

6.3.3 GxB BinaryOp new: create a named user-defined binary oper-
ator

GrB_Info GxB_BinaryOp_new

(

GrB_BinaryOp *op, // handle for the new binary operator

GxB_binary_function function, // pointer to the binary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x

GrB_Type ytype, // type of input y

const char *binop_name, // name of the user function

const char *binop_defn // definition of the user function

) ;

Creates a named GrB_BinaryOp. Only the first 127 characters of binop_name
are used. The binop_defn is a string containing the entire function itself.
For example:

void absdiff (double *z, double *x, double *y) { (*z) = fabs ((*x) - (*y)) ; } ;

...

GrB_Type AbsDiff ;

GxB_BinaryOp_new (&AbsDiff, absdiff, GrB_FP64, GrB_FP64, GrB_FP64, "absdiff",

"void absdiff (double *z, double *x, double *y) { (*z) = fabs ((*x) - (*y)) ; }") ;

The two strings binop_name and binop_defn are optional, but are re-
quired to enable the JIT compilation of kernels that use this operator.

If the JIT is enabled, or if the corresponding JIT kernel has been copied
into the PreJIT folder, the function may be NULL. In this case, a JIT kernel
is compiled that contains just the user-defined function. If the JIT is disabled
and the function is NULL, this method returns GrB_NULL_POINTER.

The above example is identical to the following usage, except that GrB_BinaryOp_new
requires a non-NULL function pointer.

void absdiff (double *z, double *x, double *y) { (*z) = fabs ((*x) - (*y)) ; } ;

...

GrB_Type AbsDiff ;

GrB_BinaryOp_new (&AbsDiff, absdiff, GrB_FP64, GrB_FP64, GrB_FP64) ;

GrB_set (AbsDiff, "absdiff", GxB_JIT_C_NAME) ;

GrB_set (AbsDiff,

"void absdiff (double *z, double *x, double *y) { (*z) = fabs ((*x) - (*y)) ; }",

GxB_JIT_C_DEFINITION) ;

To avoid name collisions with LAGraph and GraphBLAS, avoid function
names that start with LG_ and gb_.

64

6.3.4 GrB BinaryOp wait: wait for a binary operator

GrB_Info GrB_wait // wait for a user-defined binary operator

(

GrB_BinaryOp binaryop, // binary operator to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined binary operator, a GraphBLAS library may
choose to exploit non-blocking mode to delay its creation. Currently, Suite-
Sparse:GraphBLAS currently does nothing for except to ensure that the
binaryop is valid.

6.3.5 GrB BinaryOp free: free a user-defined binary operator

GrB_Info GrB_free // free a user-created binary operator

(

GrB_BinaryOp *binaryop // handle of binary operator to free

) ;

GrB_BinaryOp_free frees a user-defined binary operator. Either usage:

GrB_BinaryOp_free (&op) ;

GrB_free (&op) ;

frees the op and sets op to NULL. It safely does nothing if passed a NULL

handle, or if op == NULL on input. It does nothing at all if passed a built-in
binary operator.

6.3.6 ANY and PAIR (ONEB) operators

The GxB_PAIR operator (also called GrB_ONEB) is simple to describe: just
f(x, y) = 1. It is called the PAIR operator since it returns 1 in a semiring
when a pair of entries aik and bkj is found in the matrix multiply. This
operator is simple yet very useful. It allows purely structural computations
to be performed on matrices of any type, without having to typecast them
to Boolean with all values being true. Typecasting need not be performed
on the inputs to the PAIR operator, and the PAIR operator does not need to
access the values of the matrix. This cuts memory accesses, so it is a very
fast operator to use.

65

The GxB_PAIR_T operator is a SuiteSparse:GraphBLAS extension. It has
since been added to the v2.0 C API Specification as GrB_ONEB_T. They are
identical, but the latter name should be used for compatibility with other
GraphBLAS libraries.

The ANY operator is very unusual, but very powerful. It is the function
fany(x, y) = x, or y, where GraphBLAS has to freedom to select either x,
or y, at its own discretion. Do not confuse the ANY operator with the any

function in MATLAB/Octave, which computes a reduction using the logical
OR operator.

The ANY function is associative and commutative, and can thus serve as an
operator for a monoid. The selection of x are y is not randomized. Instead,
SuiteSparse:GraphBLAS uses this freedom to compute as fast a result as
possible. When used as the monoid in a dot product,

cij =
∑
k

aikbkj

for example, the computation can terminate as soon as any matching pair of
entries is found. When used in a parallel saxpy-style computation, the ANY

operator allows for a relaxed form of synchronization to be used, resulting in
a fast benign race condition.

Because of this benign race condition, the result of the ANY monoid can be
non-deterministic, unless it is coupled with the PAIR multiplicative operator.
In this case, the ANY_PAIR semiring will return a deterministic result, since
fany(1, 1) is always 1.

When paired with a different operator, the results are non-deterministic.
This gives a powerful method when computing results for which any value
selected by the ANY operator is valid. One such example is the breadth-first-
search tree. Suppose node j is at level v, and there are multiple nodes i
at level v − 1 for which the edge (i, j) exists in the graph. Any of these
nodes i can serve as a valid parent in the BFS tree. Using the ANY operator,
GraphBLAS can quickly compute a valid BFS tree; if it used again on the
same inputs, it might return a different, yet still valid, BFS tree, due to the
non-deterministic nature of intra-thread synchronization.

66

6.4 GraphBLAS IndexUnaryOp operators: GrB IndexUnaryOp

An index-unary operator is a scalar function of the form z = f(aij, i, j, y)
that is applied to the entries aij of an m-by-n matrix. It can be used in
GrB_apply (Section 12.12) or in GrB_select (Section 12.13) to select entries
from a matrix or vector.

The signature of the index-unary function f is as follows:

void f

(

void *z, // output value z, of type ztype

const void *x, // input value x of type xtype; value of v(i) or A(i,j)

GrB_Index i, // row index of A(i,j)

GrB_Index j, // column index of A(i,j), or zero for v(i)

const void *y // input scalar y of type ytype

) ;

The following built-in operators are available. Operators that do not de-
pend on the value of A(i,j) can be used on any matrix or vector, including
those of user-defined type. In the table, y is a scalar whose type matches the
suffix of the operator. The VALUEEQ and VALUENE operators are defined for
any built-in type. The other VALUE operators are defined only for real (not
complex) built-in types. Any index computations are done in int64_t arith-
metic; the result is typecasted to int32_t for the *INDEX_INT32 operators.

67

GraphBLAS name MATLAB/Octave description
analog

GrB_ROWINDEX_INT32 z=i+y row index of A(i,j), as int32
GrB_ROWINDEX_INT64 z=i+y row index of A(i,j), as int64
GrB_COLINDEX_INT32 z=j+y column index of A(i,j), as int32
GrB_COLINDEX_INT64 z=j+y column index of A(i,j), as int64
GrB_DIAGINDEX_INT32 z=j-(i+y) column diagonal index of A(i,j), as int32
GrB_DIAGINDEX_INT64 z=j-(i+y) column diagonal index of A(i,j), as int64
GrB_TRIL z=(j<=(i+y)) true for entries on or below the yth diagonal
GrB_TRIU z=(j>=(i+y)) true for entries on or above the yth diagonal
GrB_DIAG z=(j==(i+y)) true for entries on the yth diagonal
GrB_OFFDIAG z=(j!=(i+y)) true for entries not on the yth diagonal
GrB_COLLE z=(j<=y) true for entries in columns 0 to y

GrB_COLGT z=(j>y) true for entries in columns y+1 and above
GrB_ROWLE z=(i<=y) true for entries in rows 0 to y

GrB_ROWGT z=(i>y) true for entries in rows y+1 and above
GrB_VALUENE_T z=(aij!=y) true if A(i,j) is not equal to y

GrB_VALUEEQ_T z=(aij==y) true if A(i,j) is equal to y

GrB_VALUEGT_T z=(aij>y) true if A(i,j) is greater than y

GrB_VALUEGE_T z=(aij>=y) true if A(i,j) is greater than or equal to y

GrB_VALUELT_T z=(aij<y) true if A(i,j) is less than y

GrB_VALUELE_T z=(aij<=y) true if A(i,j) is less than or equal to y

The following methods operate on the GrB_IndexUnaryOp object:

GraphBLAS function purpose Section
GrB_IndexUnaryOp_new create a user-defined index-unary operator 6.4.1
GxB_IndexUnaryOp_new create a named user-defined index-unary operator 6.4.2
GrB_IndexUnaryOp_wait wait for a user-defined index-unary operator 6.4.3
GrB_IndexUnaryOp_free free a user-defined index-unary operator 6.4.4
GrB_get get properties of an operator 10.5
GrB_set set the operator name/definition 10.5

68

6.4.1 GrB IndexUnaryOp new: create a user-defined index-unary op-
erator

GrB_Info GrB_IndexUnaryOp_new // create a new user-defined IndexUnary op

(

GrB_IndexUnaryOp *op, // handle for the new IndexUnary operator

void *function, // pointer to IndexUnary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x (the A(i,j) entry)

GrB_Type ytype // type of scalar input y

) ;

GrB_IndexUnaryOp_new creates a new index-unary operator. The new
operator is returned in the op handle, which must not be NULL on input. On
output, its contents contains a pointer to the new index-unary operator.

The function argument to GrB_IndexUnaryOp_new is a pointer to a user-
defined function whose signature is given at the beginning of Section 6.4.
Given the properties of an entry aij in a matrix, the function should return
z as true if the entry should be kept in the output of GrB_select, or false
if it should not appear in the output. If the return value is not GrB_BOOL, it
is typecasted to GrB_BOOL by GrB_select.

The type xtype is the GraphBLAS type of the input x of the user-defined
function z = f(x, i, j, y), which is used for the entry A(i,j) of a matrix or
v(i) of a vector. The type may be built-in or user-defined.

The type ytype is the GraphBLAS type of the scalar input y of the user-
defined function z = f(x, i, j, y). The type may be built-in or user-defined.

69

6.4.2 GxB IndexUnaryOp new: create a named user-defined index-
unary operator

GrB_Info GxB_IndexUnaryOp_new // create a named user-created IndexUnaryOp

(

GrB_IndexUnaryOp *op, // handle for the new IndexUnary operator

GxB_index_unary_function function, // pointer to index_unary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x

GrB_Type ytype, // type of scalar input y

const char *idxop_name, // name of the user function

const char *idxop_defn // definition of the user function

) ;

Creates a named GrB_IndexUnaryOp. Only the first 127 characters of
idxop_name are used. The ixdop_defn is a string containing the entire
function itself.

The two strings idxop_name and idxop_defn are optional, but are re-
quired to enable the JIT compilation of kernels that use this operator. The
strings can also be set the GrB_set after the operator is created with GrB_IndexUnaryOp_new.
For example:

void banded_idx

(

bool *z,

const int64_t *x, // unused

int64_t i,

int64_t j,

const int64_t *thunk

)

{

// d = abs (j-i)

int64_t d = j-i ;

if (d < 0) d = -d ;

(*z) = (d <= *thunk) ;

}

#define BANDED_IDX_DEFN \

"void banded_idx \n" \

"(\n" \

" bool *z, \n" \

" const int64_t *x, // unused \n" \

" int64_t i, \n" \

" int64_t j, \n" \

70

" const int64_t *thunk \n" \

") \n" \

"{ \n" \

" int64_t d = j-i ; \n" \

" if (d < 0) d = -d ; \n" \

" (*z) = (d <= *thunk) ; \n" \

"}"

GxB_IndexUnaryOp_new (&Banded,

(GxB_index_unary_function) banded_idx,

GrB_BOOL, GrB_INT64, GrB_INT64,

"banded_idx", BANDED_IDX_DEFN)) ;

If JIT compilation is enabled, or if the corresponding JIT kernel has been
copied into the PreJIT folder, the function may be NULL. In this case, a JIT
kernel is compiled that contains just the user-defined function. If the JIT is
disabled and the function is NULL, this method returns GrB_NULL_POINTER.

The above example is identical to the following usage except that GrB_IndexUnaryOp_new
requires a non-NULL function pointer. The banded_idx function is defined
the same as above.

void banded_idx ... see above

#define BANDED_IDX_DEFN ... see above

GrB_IndexUnaryOp_new (&Banded,

(GxB_index_unary_function) banded_idx,

GrB_BOOL, GrB_INT64, GrB_INT64) ;

GrB_set (Banded, "banded_idx", GxB_JIT_C_NAME)) ;

GrB_set (Banded, BANDED_IDX_DEFN, GxB_JIT_C_DEFINITION)) ;

To avoid name collisions with LAGraph and GraphBLAS, avoid function
names that start with LG_ and gb_.

71

6.4.3 GrB IndexUnaryOp wait: wait for an index-unary operator

GrB_Info GrB_wait // wait for a user-defined binary operator

(

GrB_IndexUnaryOp op, // index-unary operator to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined index-unary operator, a GraphBLAS library
may choose to exploit non-blocking mode to delay its creation. Currently,
SuiteSparse:GraphBLAS currently does nothing except to ensure that the op
is valid.

6.4.4 GrB IndexUnaryOp free: free a user-defined index-unary opera-
tor

GrB_Info GrB_free // free a user-created index-unary operator

(

GrB_IndexUnaryOp *op // handle of IndexUnary to free

) ;

GrB_IndexUnaryOp_free frees a user-defined index-unary operator. Ei-
ther usage:

GrB_IndexUnaryOp_free (&op) ;

GrB_free (&op) ;

frees the op and sets op to NULL. It safely does nothing if passed a NULL

handle, or if op == NULL on input. It does nothing at all if passed a built-in
index-unary operator.

72

6.5 GraphBLAS index-binary operators: GxB IndexBinaryOp

An index-binary operator is a scalar function of the following form:

z = f(x, ix, jx, y, iy, jy,Θ),

where the value x appears at row ix and column jx in its matrix, and the
value y appears at row iy and column jy in its matrix. The value Θ is a
scalar that is the same for all uses of the operator. See our IEEE HPEC’24
paper for more details ([MBM+24]), in the GraphBLAS/Doc folder.

When used in an element-wise method forC = A⊕B and related methods
(GrB_eWiseAdd, GxB_eWiseUnion, or GrB_eWiseMult), operator is used for
a pair of entries aij and bij, as

z = f(aij, i, j, bij, i, j,Θ).

When used in GrB_kronecker, it is used on a pair of entries ai1,j1 and bi2,j2 ,
as

z = f(aij, i1, j1, bij, i2, j2,Θ).

When used as the multiplicative operator in a semiring, to compute C =
A⊕ .⊗B, the operator is used as

z = f(aik, i, k, bkj, k, j,Θ)

to compute an entry to be summed by the monoid of the semiring.
No GraphBLAS operations directly use the GxB_IndexBinaryOp. In-

stead, the operator is coupled with a scalar Theta value to create a new index-
based binary operator, which is simply a special case of a GrB_BinaryOp. The
resulting GrB_BinaryOp can then be passed to element-wise methods and as
the multiplicative operator of a new semiring.

The signature of the index-binary function f is as follows:

void f

(

void *z, // output value z, of type ztype

const void *x, // input value x of type xtype; value of v(ix) or A(ix,jx)

GrB_Index ix, // row index of v(ix) or A(ix,jx)

GrB_Index jx, // column index of A(ix,jx), or zero for v(ix)

const void *y, // input value y of type ytype; value of w(iy) or B(iy,jy)

GrB_Index iy, // row index of w(iy) or B(iy,jy)

GrB_Index jy, // column index of B(iy,jy), or zero for w(iy)

const void *theta // input scalar theta of type theta_type

) ;

73

The following binary operators (GrB_BinaryOp objects) are pre-defined,
where N can be INT32 or INT64. These operators do not use theta. Instead,
the offset of 1 in GxB_FIRSTI1 is fixed into the operator itself.

Built-in index-based binary operators for any type
GraphBLAS name types (domains) z = f(x, y) description
GxB_FIRSTI_N → N z = ix row index of x (0-based)
GxB_FIRSTI1_N → N z = ix + 1 row index of x (1-based)
GxB_FIRSTJ_N → N z = jx column index of x (0-based)
GxB_FIRSTJ1_N → N z = jx + 1 column index of x (1-based)
GxB_SECONDI_N → N z = iy row index of y (0-based)
GxB_SECONDI1_N → N z = iy + 1 row index of y (1-based)
GxB_SECONDJ_N → N z = jy column index of y (0-based)
GxB_SECONDJ1_N → N z = jy + 1 column index of y (1-based)

The following methods operate on the GxB_IndexBinaryOp object:

GraphBLAS function purpose Section
GxB_IndexBinaryOp_new create a named user-defined index-binary operator 6.5.1
GxB_IndexBinaryOp_wait wait for a user-defined index-binary operator 6.5.2
GxB_IndexBinaryOp_free free a user-defined index-binary operator 6.5.3
GxB_BinaryOp_new_IndexOp create a new index-based GrB_BinaryOp 6.5.4
GrB_get get properties of an operator 10.7
GrB_set set the operator name/definition 10.7

74

6.5.1 GxB IndexBinaryOp new: create a user-defined index-binary op-
erator

GrB_Info GxB_IndexBinaryOp_new

(

GxB_IndexBinaryOp *op, // handle for the new index binary operator

GxB_index_binary_function function, // pointer to the index binary function

GrB_Type ztype, // type of output z

GrB_Type xtype, // type of input x

GrB_Type ytype, // type of input y

GrB_Type theta_type, // type of input theta

const char *idxbinop_name, // name of the user function

const char *idxbinop_defn // definition of the user function

) ;

Creates a named GxB_IndexBinaryOp. Only the first 127 characters of
idxbinop_name are used. The ixdbinop_defn is a string containing the
entire function itself.

The two strings idxbinop_name and idxbinop_defn are optional, but are
required to enable the JIT compilation of kernels that use this operator. For
example, the following operator can be used to compute the argmax of a ma-
trix with a single call to GrB_mxv. It returns a vector c where c(i) = (k,v),
where the largest value in the ith row of A has value v and appears in column
k. If multiple values in the ith row have the same largest value, the one with
the smallest column index is returned.

typedef struct { int64_t k ; double v ; } tuple_fp64 ;

#define FP64_K "typedef struct { int64_t k ; double v ; } tuple_fp64 ;"

void make_fp64 (tuple_fp64 *z,

const double *x, GrB_Index ix, GrB_Index jx,

const void *y, GrB_Index iy, GrB_Index jy,

const void *theta)

{

z->k = (int64_t) jx ;

z->v = (*x) ;

}

void max_fp64 (tuple_fp64 *z, const tuple_fp64 *x, const tuple_fp64 *y)

{

if (x->v > y->v || (x->v == y->v && x->k < y->k))

{

z->k = x->k ;

z->v = x->v ;

}

else

75

{

z->k = y->k ;

z->v = y->v ;

}

}

#define MAX_FP64 (a string containing the max_fp64 function above)

// create the types and operators:

GrB_Scalar Theta ; // unused, but cannot be NULL

GrB_Scalar_new (&Theta, GrB_BOOL) ;

GrB_Scalar_setElement_BOOL (Theta, 0) ;

GxB_IndexBinaryOp Iop ;

GrB_BinaryOp Bop, MonOp ;

GrB_Type Tuple ;

GxB_Type_new (&Tuple, sizeof (tuple_fp64), "tuple_fp64", FP64_K) ;

GxB_IndexBinaryOp_new (&Iop, make_fp64, Tuple, GrB_FP64, GrB_BOOL, GrB_BOOL,

"make_fp64", MAKE_FP64)) ;

GxB_BinaryOp_new_IndexOp (&Bop, Iop, Theta) ;

tuple_fp64 id ;

memset (&id, 0, sizeof (tuple_fp64)) ;

id.k = INT64_MAX ;

id.v = (double) (-INFINITY) ;

GxB_BinaryOp_new (&MonOp, max_fp64, Tuple, Tuple, Tuple, "max_fp64", MAX_FP64) ;

GrB_Monoid MonOp ;

GrB_Semiring Semiring ;

GrB_Monoid_new_UDT (&Monoid, MonOp, &id) ;

GrB_Semiring_new (&Semiring, Monoid, Bop) ;

// compute the argmax of each row of a GrB_FP64 matrix A:

// y = zeros (ncols,1) ;

GrB_Vector y ;

GrB_Matrix_new (&y, GrB_BOOL, ncols, 1)) ;

GrB_Matrix_assign_BOOL (y, NULL, NULL, 0, GrB_ALL, ncols, GrB_ALL, 1, NULL)) ;

// c = A*y using the argmax semiring

GrB_Vector_new (&c, Tuple, nrows, 1)) ;

GrB_mxv (c, NULL, NULL, Semiring, A, y, NULL) ;

To avoid name collisions with LAGraph and GraphBLAS, avoid function
names that start with LG_ and gb_.

76

6.5.2 GxB IndexBinaryOp wait: wait for an index-binary operator

GrB_Info GxB_IndexBinaryOp_wait

(

GxB_IndexBinaryOp op,

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined index-binary operator, a GraphBLAS library
may choose to exploit non-blocking mode to delay its creation. Currently,
SuiteSparse:GraphBLAS currently does nothing except to ensure that the op
is valid.

6.5.3 GxB IndexBinaryOp free: free a user-defined index-binary oper-
ator

GrB_Info GrB_free // free a user-created index-binary operator

(

GxB_IndexBinaryOp *op // handle of IndexBinaryOp to free

) ;

GxB_IndexBinaryOp_free frees a user-defined index-binary operator. Ei-
ther usage:

GxB_IndexBinaryOp_free (&op) ;

GrB_free (&op) ;

frees the op and sets op to NULL. It safely does nothing if passed a NULL

handle, or if op == NULL on input. No built-in index-binary operators exist,
but if they did, the method does nothing at all if passed a built-in index-
binary operator.

77

6.5.4 GxB BinaryOp new IndexOp: create a index-based binary oper-
ator

GrB_Info GxB_BinaryOp_new_IndexOp

(

GrB_BinaryOp *binop, // handle of binary op to create

GxB_IndexBinaryOp idxbinop, // based on this index binary op

GrB_Scalar theta // theta value to bind to the new binary op

) ;

The GxB_IndexBinaryOp cannot be directly used in any GraphBLAS op-
eration such as GrB_mxm. Instead, it must be used to create a new index-based
GrB_BinaryOp. The resulting binary operator can then be used to as the mul-
tiplicative operator in a new user-defined semiring, or as the primary binary
operator of the element-wise operations (eWiseAdd, eWiseUnion, eWiseMult,
or kronecker).

The resulting binary operator cannot be used as the accum operator in
any GraphBLAS operation. It also cannot be used in other places where
a binary operator appears, including GrB_*_build, GrB_apply, GrB_reduce
and GrB_*_sort.

The GxB_BinaryOp_new_IndexOpmethod creates this index-based binary
operator. It takes two input parameters: an index-binary operator, and a
scalar Theta. The value of Theta is copied into this new binary operator, and
the value cannot be changed. To change Theta, the binary operator must be
freed, and any semiring that would like to use the new value of Theta must
also be recreated.

An example of its use is given in Section 6.5.1.

78

6.6 GraphBLAS monoids: GrB Monoid

A monoid is defined on a single domain (that is, a single type), T . It consists
of an associative binary operator z = f(x, y) whose three operands x, y,
and z are all in this same domain T (that is T × T → T). The operator
must also have an identity element, or “zero” in this domain, such that
f(x, 0) = f(0, x) = x. Recall that an associative operator f(x, y) is one
for which the condition f(a, f(b, c)) = f(f(a, b), c) always holds. That is,
operator can be applied in any order and the results remain the same. If
used in a semiring, the operator must also be commutative.

The 77 predefined monoids are listed in the table below, which includes
nearly all monoids that can be constructed from built-in binary operators.
A few additional monoids can be defined with GrB_Monoid_new using built-
in operators, such as bitwise monoids for signed integers. Recall that T
denotes any built-in type (including boolean, integer, floating point real, and
complex), R denotes any non-complex type (including bool), I denotes any
integer type, and Z denotes any complex type. Let S denote the 10 non-
boolean real types. Let U denote all unsigned integer types.

The table lists the GraphBLAS monoid, its type, expression, identity
value, and terminal value (if any). For these built-in monoids, the terminal
values are the annihilators of the function, which is the value z so that
z = f(z, y) regardless of the value of y. For example min(−∞, y) = −∞ for
any y. For integer domains, +∞ and −∞ are the largest and smallest integer
in their range. With unsigned integers, the smallest value is zero, and thus
GrB_MIN_MONOID_UINT8 has an identity of 255 and a terminal value of 0.

When computing with a monoid, the computation can terminate early if
the terminal value arises. No further work is needed since the result will not
change. This value is called the terminal value instead of the annihilator,
since a user-defined operator can be created with a terminal value that is not
an annihilator. See Section 6.6.3 for an example.

The GxB_ANY_* monoid can terminate as soon as it finds any value at all.

79

GraphBLAS types (domains) expression identity terminal
operator z = f(x, y)
GrB_PLUS_MONOID_S S × S → S z = x+ y 0 none
GrB_TIMES_MONOID_S S × S → S z = xy 1 0 or none (see note)
GrB_MIN_MONOID_S S × S → S z = min(x, y) +∞ −∞
GrB_MAX_MONOID_S S × S → S z = max(x, y) −∞ +∞
GxB_PLUS_Z_MONOID Z × Z → Z z = x+ y 0 none
GxB_TIMES_Z_MONOID Z × Z → Z z = xy 1 none
GxB_ANY_T_MONOID T × T → T z = x or y any any
GrB_LOR_MONOID bool × bool → bool z = x ∨ y false true
GrB_LAND_MONOID bool × bool → bool z = x ∧ y true false
GrB_LXOR_MONOID bool × bool → bool z = x ⊻ y false none
GrB_LXNOR_MONOID bool × bool → bool z = (x == y) true none
GxB_BOR_U_MONOID U × U → U z=x|y all bits zero all bits one
GxB_BAND_U_MONOID U × U → U z=x&y all bits one all bits zero
GxB_BXOR_U_MONOID U × U → U z=x^y all bits zero none
GxB_BXNOR_U_MONOID U × U → U z=~(x^y) all bits one none

The C API Specification includes 44 predefined monoids, with the nam-
ing convention GrB_op_MONOID_type. Forty monoids are available for the
four operators MIN, MAX, PLUS, and TIMES, each with the 10 non-boolean
real types. Four boolean monoids are predefined: GrB_LOR_MONOID_BOOL,
GrB_LAND_MONOID_BOOL, GrB_LXOR_MONOID_BOOL, and GrB_LXNOR_MONOID_BOOL.

These all appear in SuiteSparse:GraphBLAS, which adds 33 additional
predefined GxB*monoids, with the naming convention GxB_op_type_MONOID.
The ANY operator can be used for all 13 types (including complex). The PLUS
and TIMES operators are provided for both complex types, for 4 additional
complex monoids. Sixteen monoids are predefined for four bitwise operators
(BOR, BAND, BXOR, and BNXOR), each with four unsigned integer types (UINT8,
UINT16, UINT32, and UINT64).

NOTE: The GrB_TIMES_FP* operators do not have a terminal value of
zero, since they comply with the IEEE 754 standard, and 0*NaN is not zero,
but NaN. Technically, their terminal value is NaN, but this value is rare in
practice and thus the terminal condition is not worth checking.

The next sections define the following methods for the GrB_Monoid object:

80

GraphBLAS function purpose Section
GrB_Monoid_new create a user-defined monoid 6.6.1
GrB_Monoid_wait wait for a user-defined monoid 6.6.2
GxB_Monoid_terminal_new create a monoid that has a terminal value 6.6.3
GrB_Monoid_free free a monoid 6.6.4
GrB_get get properties of a monoid 10.8
GrB_set set the monoid name 10.8

6.6.1 GrB Monoid new: create a monoid

GrB_Info GrB_Monoid_new // create a monoid

(

GrB_Monoid *monoid, // handle of monoid to create

GrB_BinaryOp op, // binary operator of the monoid

<type> identity // identity value of the monoid

) ;

GrB_Monoid_new creates a monoid. The operator, op, must be an asso-
ciative binary operator, either built-in or user-defined.

In the definition above, <type> is a place-holder for the specific type of
the monoid. For built-in types, it is the C type corresponding to the built-in
type (see Section 6.1), such as bool, int32_t, float, or double. In this case,
identity is a scalar value of the particular type, not a pointer. For user-
defined types, <type> is void *, and thus identity is a not a scalar itself
but a void * pointer to a memory location containing the identity value of
the user-defined operator, op.

If op is a built-in operator with a known identity value, then the identity
parameter is ignored, and its known identity value is used instead. The op

cannot be a binary operator created by GxB_BinaryOp_new_IndexOp.

6.6.2 GrB Monoid wait: wait for a monoid

GrB_Info GrB_wait // wait for a user-defined monoid

(

GrB_Monoid monoid, // monoid to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined monoid, a GraphBLAS library may choose to
exploit non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that the monoid is valid.

81

6.6.3 GxB Monoid terminal new: create a monoid with terminal

GrB_Info GxB_Monoid_terminal_new // create a monoid that has a terminal value

(

GrB_Monoid *monoid, // handle of monoid to create

GrB_BinaryOp op, // binary operator of the monoid

<type> identity, // identity value of the monoid

<type> terminal // terminal value of the monoid

) ;

GxB_Monoid_terminal_new is identical to GrB_Monoid_new, except that
it allows for the specification of a terminal value. The <type> of the terminal
value is the same as the identity parameter; see Section 6.6.1 for details.

The terminal value of a monoid is the value z for which z = f(z, y) for
any y, where z = f(x, y) is the binary operator of the monoid. This is also
called the annihilator, but the term terminal value is used here. This is
because all annihilators are terminal values, but a terminal value need not
be an annihilator, as described in the MIN example below.

If the terminal value is encountered during computation, the rest of the
computations can be skipped. This can greatly improve the performance
of GrB_reduce, and matrix multiply in specific cases (when a dot product
method is used). For example, using GrB_reduce to compute the sum of all
entries in a GrB_FP32 matrix with e entries takes O(e) time, since a monoid
based on GrB_PLUS_FP32 has no terminal value. By contrast, a reduction
using GrB_LOR on a GrB_BOOL matrix can take as little as O(1) time, if a
true value is found in the matrix very early.

Monoids based on the built-in GrB_MIN_* and GrB_MAX_* operators (for
any type), the boolean GrB_LOR, and the boolean GrB_LAND operators all
have terminal values. For example, the identity value of GrB_LOR is false,
and its terminal value is true. When computing a reduction of a set of
boolean values to a single value, once a true is seen, the computation can
exit early since the result is now known.

If op is a built-in operator with known identity and terminal values, then
the identity and terminal parameters are ignored, and its known identity
and terminal values are used instead.

There may be cases in which the user application needs to use a non-
standard terminal value for a built-in operator. For example, suppose the
matrix has type GrB_FP32, but all values in the matrix are known to be
non-negative. The annihilator value of MIN is -INFINITY, but this will never
be seen. However, the computation could terminate when finding the value

82

zero. This is an example of using a terminal value that is not actually an
annihilator, but it functions like one since the monoid will operate strictly
on non-negative values.

In this case, a monoid created with GrB_MIN_FP32 will not terminate
early, because the identity and terminal inputs are ignored when using GrB_Monoid_new
with a built-in operator as its input. To create a monoid that can termi-
nate early, create a user-defined operator that computes the same thing as
GrB_MIN_FP32, and then create a monoid based on this user-defined operator
with a terminal value of zero and an identity of +INFINITY. The op cannot
be a binary operator created by GxB_BinaryOp_new_IndexOp.

6.6.4 GrB Monoid free: free a monoid

GrB_Info GrB_free // free a user-created monoid

(

GrB_Monoid *monoid // handle of monoid to free

) ;

GrB_Monoid_frees frees a monoid. Either usage:

GrB_Monoid_free (&monoid) ;

GrB_free (&monoid) ;

frees the monoid and sets monoid to NULL. It safely does nothing if passed a
NULL handle, or if monoid == NULL on input. It does nothing at all if passed
a built-in monoid.

83

6.7 GraphBLAS semirings: GrB Semiring

A semiring defines all the operators required to define the multiplication
of two sparse matrices in GraphBLAS, C = AB. The “add” operator is a
commutative and associative monoid, and the binary “multiply” operator
defines a function z = fmult(x, y) where the type of z matches the exactly
with the monoid type. SuiteSparse:GraphBLAS includes 1,473 predefined
built-in semirings. The next sections define the following methods for the
GrB_Semiring object:

GraphBLAS function purpose Section
GrB_Semiring_new create a user-defined semiring 6.7.1
GrB_Semiring_wait wait for a user-defined semiring 6.7.2
GrB_Semiring_free free a semiring 6.7.3
GrB_get get properties of a semiring 10.9
GrB_set set the semiring name 10.9

6.7.1 GrB Semiring new: create a semiring

GrB_Info GrB_Semiring_new // create a semiring

(

GrB_Semiring *semiring, // handle of semiring to create

GrB_Monoid add, // add monoid of the semiring

GrB_BinaryOp multiply // multiply operator of the semiring

) ;

GrB_Semiring_new creates a new semiring, with add being the additive
monoid and multiply being the binary “multiply” operator. In addition to
the standard error cases, the function returns GrB_DOMAIN_MISMATCH if the
output (ztype) domain of multiply does not match the domain of the add

monoid.
The v2.0 C API Specification for GraphBLAS includes 124 predefined

semirings, with names of the form GrB_add_mult_SEMIRING_type, where
add is the operator of the additive monoid, mult is the multiply opera-
tor, and type is the type of the input x to the multiply operator, f(x, y).
The name of the domain for the additive monoid does not appear in the
name, since it always matches the type of the output of the mult oper-
ator. Twelve kinds of GrB* semirings are available for all 10 real, non-
boolean types: PLUS_TIMES, PLUS_MIN, MIN_PLUS, MIN_TIMES, MIN_FIRST,
MIN_SECOND, MIN_MAX, MAX_PLUS, MAX_TIMES, MAX_FIRST, MAX_SECOND, and

84

MAX_MIN. Four semirings are for boolean types only: LOR_LAND, LAND_LOR,
LXOR_LAND, and LXNOR_LOR.

SuiteSparse:GraphBLAS pre-defines 1,553 semirings from built-in types
and operators, listed below. The naming convention is GxB_add_mult_type.
The 124 GrB* semirings are a subset of the list below, included with two
names: GrB* and GxB*. If the GrB* name is provided, its use is preferred,
for portability to other GraphBLAS implementations.

� 1000 semirings with a multiplier T × T → T where T is any of the 10
non-Boolean, real types, from the complete cross product of:

– 5 monoids (MIN, MAX, PLUS, TIMES, ANY)

– 20 multiply operators (FIRST, SECOND, PAIR (same as ONEB), MIN,
MAX, PLUS, MINUS, RMINUS, TIMES, DIV, RDIV, ISEQ, ISNE, ISGT,
ISLT, ISGE, ISLE, LOR, LAND, LXOR).

– 10 non-Boolean types, T

� 300 semirings with a comparator T×T → bool, where T is non-Boolean
and real, from the complete cross product of:

– 5 Boolean monoids (LAND, LOR, LXOR, EQ, ANY)

– 6 multiply operators (EQ, NE, GT, LT, GE, LE)

– 10 non-Boolean types, T

� 55 semirings with purely Boolean types, bool × bool → bool, from
the complete cross product of:

– 5 Boolean monoids (LAND, LOR, LXOR, EQ, ANY)

– 11 multiply operators (FIRST, SECOND, PAIR (same as ONEB), LOR,
LAND, LXOR, EQ, GT, LT, GE, LE)

� 54 complex semirings, Z×Z → Z where Z is GxB_FC32 (single precision
complex) or GxB_FC64 (double precision complex):

– 3 complex monoids (PLUS, TIMES, ANY)

– 9 complex multiply operators (FIRST, SECOND, PAIR (same as ONEB),
PLUS, MINUS, TIMES, DIV, RDIV, RMINUS)

– 2 complex types, Z

85

� 64 bitwise semirings, U × U → U where U is an unsigned integer.

– 4 bitwise monoids (BOR, BAND, BXOR, BXNOR)

– 4 bitwise multiply operators (the same list)

– 4 unsigned integer types

� 80 index-based semirings, X ×X → N where N is INT32 or INT64:

– 5 monoids (MIN, MAX, PLUS, TIMES, ANY)

– 8 index-based operators (FIRSTI, FIRSTI1, FIRSTJ, FIRSTJ1, SECONDI,
SECONDI1, SECONDJ, SECONDJ1)

– 2 integer types (INT32, INT64)

The multiply operator can be any a binary operator, including one created
by GxB_BinaryOp_new_IndexOp.

6.7.2 GrB Semiring wait: wait for a semiring

GrB_Info GrB_wait // wait for a user-defined semiring

(

GrB_Semiring semiring, // semiring to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined semiring, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that the semiring is valid.

6.7.3 GrB Semiring free: free a semiring

GrB_Info GrB_free // free a user-created semiring

(

GrB_Semiring *semiring // handle of semiring to free

) ;

GrB_Semiring_free frees a semiring. Either usage:

GrB_Semiring_free (&semiring) ;

GrB_free (&semiring) ;

frees the semiring and sets semiring to NULL. It safely does nothing if passed
a NULL handle, or if semiring == NULL on input. It does nothing at all if
passed a built-in semiring.

86

6.8 GraphBLAS scalars: GrB Scalar

This section describes a set of methods that create, modify, query, and de-
stroy a GraphBLAS scalar, GrB_Scalar:

GraphBLAS function purpose Section
GrB_Scalar_new create a scalar 6.8.1
GrB_Scalar_wait wait for a scalar 6.8.2
GrB_Scalar_dup copy a scalar 6.8.3
GrB_Scalar_clear clear a scalar of its entry 6.8.4
GrB_Scalar_nvals return number of entries in a scalar 6.8.5
GrB_Scalar_setElement set the single entry of a scalar 6.8.6
GrB_Scalar_extractElement get the single entry from a scalar 6.8.7
GxB_Scalar_memoryUsage memory used by a scalar 6.8.8
GxB_Scalar_type type of a scalar 6.8.9
GrB_Scalar_free free a scalar 6.8.10

GrB_get get properties of a scalar 10.12
GrB_set set properties of a scalar 10.12

6.8.1 GrB Scalar new: create a scalar

GrB_Info GrB_Scalar_new // create a new GrB_Scalar with no entry

(

GrB_Scalar *s, // handle of GrB_Scalar to create

GrB_Type type // type of GrB_Scalar to create

) ;

GrB_Scalar_new creates a new scalar with no entry in it, of the given
type. This is analogous to MATLAB/Octave statement s = sparse(0),
except that GraphBLAS can create scalars any type. The pattern of the new
scalar is empty.

6.8.2 GrB Scalar wait: wait for a scalar

GrB_Info GrB_wait // wait for a scalar

(

GrB_Scalar s, // scalar to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

In non-blocking mode, the computations for a GrB_Scalar may be de-
layed. In this case, the scalar is not yet safe to use by multiple independent
user threads. A user application may force completion of a scalar s via

87

GrB_Scalar_wait(s,mode). With a mode of GrB_MATERIALIZE, all pend-
ing computations are finished, and afterwards different user threads may
simultaneously call GraphBLAS operations that use the scalar s as an input
parameter. See Section 10.2.2 if GraphBLAS is compiled without OpenMP.

6.8.3 GrB Scalar dup: copy a scalar

GrB_Info GrB_Scalar_dup // make an exact copy of a GrB_Scalar

(

GrB_Scalar *s, // handle of output GrB_Scalar to create

const GrB_Scalar t // input GrB_Scalar to copy

) ;

GrB_Scalar_dup makes a deep copy of a scalar. In GraphBLAS, it is
possible, and valid, to write the following:

GrB_Scalar t, s ;

GrB_Scalar_new (&t, GrB_FP64) ;

s = t ; // s is a shallow copy of t

Then s and t can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different scalars are needed, then this should be used instead:

GrB_Scalar t, s ;

GrB_Scalar_new (&t, GrB_FP64) ;

GrB_Scalar_dup (&s, t) ; // like s = t, but making a deep copy

Then s and t are two different scalars that currently have the same value,
but they do not depend on each other. Modifying one has no effect on the
other. The GrB_NAME is copied into the new scalar.

6.8.4 GrB Scalar clear: clear a scalar of its entry

GrB_Info GrB_Scalar_clear // clear a GrB_Scalar of its entry

(// type remains unchanged.

GrB_Scalar s // GrB_Scalar to clear

) ;

GrB_Scalar_clear clears the entry from a scalar. The pattern of s is
empty, just as if it were created fresh with GrB_Scalar_new. Analogous
with s = sparse (0) in MATLAB/Octave. The type of s does not change.
Any pending updates to the scalar are discarded.

88

6.8.5 GrB Scalar nvals: return the number of entries in a scalar

GrB_Info GrB_Scalar_nvals // get the number of entries in a GrB_Scalar

(

GrB_Index *nvals, // GrB_Scalar has nvals entries (0 or 1)

const GrB_Scalar s // GrB_Scalar to query

) ;

GrB_Scalar_nvals returns the number of entries in a scalar, which is
either 0 or 1. Roughly analogous to nvals = nnz(s) in MATLAB/Octave,
except that the implicit value in GraphBLAS need not be zero and nnz (short
for “number of nonzeros”) in MATLAB is better described as “number of
entries” in GraphBLAS.

6.8.6 GrB Scalar setElement: set the single entry of a scalar

GrB_Info GrB_Scalar_setElement // s = x

(

GrB_Scalar s, // GrB_Scalar to modify

<type> x // user scalar to assign to s

) ;

GrB_Scalar_setElement sets the single entry in a scalar, like s = sparse(x)

in MATLAB notation. For further details of this function, see GrB_Matrix_setElement
in Section 6.10.12. If an error occurs, GrB_error(&err,s) returns details
about the error. The scalar x can be any non-opaque C scalar correspond-
ing to a built-in type, or void * for a user-defined type. It cannot be a
GrB_Scalar.

89

6.8.7 GrB Scalar extractElement: get the single entry from a scalar

GrB_Info GrB_Scalar_extractElement // x = s

(

<type> *x, // user scalar extracted

const GrB_Scalar s // GrB_Sclar to extract an entry from

) ;

GrB_Scalar_extractElement extracts the single entry from a sparse
scalar, like x = full(s) in MATLAB. Further details of this method are
discussed in Section 6.10.13, which discusses GrB_Matrix_extractElement.
NOTE: if no entry is present in the scalar s, then x is not modified, and
the return value of GrB_Scalar_extractElement is GrB_NO_VALUE.

6.8.8 GxB Scalar memoryUsage: memory used by a scalar

GrB_Info GxB_Scalar_memoryUsage // return # of bytes used for a scalar

(

size_t *size, // # of bytes used by the scalar s

const GrB_Scalar s // GrB_Scalar to query

) ;

Returns the memory space required for a scalar, in bytes. By default,
any read-only components are not included in the total memory. This can
be changed with via GrB_set; see Section 10.2.

6.8.9 GxB Scalar type: type of a scalar

GrB_Info GxB_Scalar_type // get the type of a GrB_Scalar

(

GrB_Type *type, // returns the type of the GrB_Scalar

const GrB_Scalar s // GrB_Scalar to query

) ;

Returns the type of a scalar. See GxB_Matrix_type for details (Sec-
tion 6.10.26).

90

6.8.10 GrB Scalar free: free a scalar

GrB_Info GrB_free // free a GrB_Scalar

(

GrB_Scalar *s // handle of GrB_Scalar to free

) ;

GrB_Scalar_free frees a scalar. Either usage:

GrB_Scalar_free (&s) ;

GrB_free (&s) ;

frees the scalar s and sets s to NULL. It safely does nothing if passed a NULL

handle, or if s == NULL on input. Any pending updates to the scalar are
abandoned.

91

6.9 GraphBLAS vectors: GrB Vector

This section describes a set of methods that create, modify, query, and de-
stroy a GraphBLAS sparse vector, GrB_Vector:

GraphBLAS function purpose Section
GrB_Vector_new create a vector 6.9.1
GrB_Vector_wait wait for a vector 6.9.2
GrB_Vector_dup copy a vector 6.9.3
GrB_Vector_clear clear a vector of all entries 6.9.4
GrB_Vector_size size of a vector 6.9.5
GrB_Vector_nvals number of entries in a vector 6.9.6
GrB_Vector_build build a vector from tuples 6.9.7
GxB_Vector_build_Vector build a vector from tuples 6.9.8
GxB_Vector_build_Scalar build a vector from tuples 6.9.9
GxB_Vector_build_Scalar_Vector build a vector from tuples 6.9.10
GrB_Vector_setElement add an entry to a vector 6.9.11
GrB_Vector_extractElement get an entry from a vector 6.9.12
GxB_Vector_isStoredElement check if entry present in vector 6.9.13
GrB_Vector_removeElement remove an entry from a vector 6.9.14
GrB_Vector_extractTuples get all entries from a vector 6.9.15
GxB_Vector_extractTuples_Vector get all entries from a vector 6.9.16
GrB_Vector_resize resize a vector 6.9.17
GxB_Vector_diag extract a diagonal from a matrix 6.9.18
GxB_Vector_memoryUsage memory used by a vector 6.9.19
GxB_Vector_type type of the matrix 6.9.20
GrB_Vector_free free a vector 6.9.21

GxB_Vector_serialize serialize a vector 6.11.1
GxB_Vector_deserialize deserialize a vector 6.11.2

GxB_Vector_sort sort a vector 6.15.1

GrB_get get properties of a vector 10.11
GrB_set set properties of a vector 10.11

Refer to Section 6.11 for serialization/deserialization methods and to Sec-
tion 6.15 for sorting methods.

92

6.9.1 GrB Vector new: create a vector

GrB_Info GrB_Vector_new // create a new vector with no entries

(

GrB_Vector *v, // handle of vector to create

GrB_Type type, // type of vector to create

GrB_Index n // vector dimension is n-by-1

) ;

GrB_Vector_new creates a new n-by-1 sparse vector with no entries in
it, of the given type. This is analogous to MATLAB/Octave statement
v = sparse (n,1), except that GraphBLAS can create sparse vectors any
type. The pattern of the new vector is empty.

SPEC: n may be zero, as an extension to the specification.

6.9.2 GrB Vector wait: wait for a vector

GrB_Info GrB_wait // wait for a vector

(

GrB_Vector w, // vector to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

In non-blocking mode, the computations for a GrB_Vector may be de-
layed. In this case, the vector is not yet safe to use by multiple independent
user threads. A user application may force completion of a vector w via
GrB_Vector_wait(w,mode). With a mode of GrB_MATERIALIZE, all pend-
ing computations are finished, and afterwards different user threads may
simultaneously call GraphBLAS operations that use the vector w as an input
parameter. See Section 10.2.2 if GraphBLAS is compiled without OpenMP.

93

6.9.3 GrB Vector dup: copy a vector

GrB_Info GrB_Vector_dup // make an exact copy of a vector

(

GrB_Vector *w, // handle of output vector to create

const GrB_Vector u // input vector to copy

) ;

GrB_Vector_dup makes a deep copy of a sparse vector. In GraphBLAS,
it is possible, and valid, to write the following:

GrB_Vector u, w ;

GrB_Vector_new (&u, GrB_FP64, n) ;

w = u ; // w is a shallow copy of u

Then w and u can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different vectors are needed, then this should be used instead:

GrB_Vector u, w ;

GrB_Vector_new (&u, GrB_FP64, n) ;

GrB_Vector_dup (&w, u) ; // like w = u, but making a deep copy

Then w and u are two different vectors that currently have the same set
of values, but they do not depend on each other. Modifying one has no effect
on the other. The GrB_NAME is copied into the new vector.

6.9.4 GrB Vector clear: clear a vector of all entries

GrB_Info GrB_Vector_clear // clear a vector of all entries;

(// type and dimension remain unchanged.

GrB_Vector v // vector to clear

) ;

GrB_Vector_clear clears all entries from a vector. All values v(i) are
now equal to the implicit value, depending on what semiring ring is used to
perform computations on the vector. The pattern of v is empty, just as if it
were created fresh with GrB_Vector_new. Analogous with v (:) = sparse(0)

in MATLAB. The type and dimension of v do not change. Any pending up-
dates to the vector are discarded.

94

6.9.5 GrB Vector size: return the size of a vector

GrB_Info GrB_Vector_size // get the dimension of a vector

(

GrB_Index *n, // vector dimension is n-by-1

const GrB_Vector v // vector to query

) ;

GrB_Vector_size returns the size of a vector (the number of rows). Anal-
ogous to n = length(v) or n = size(v,1) in MATLAB.

6.9.6 GrB Vector nvals: return the number of entries in a vector

GrB_Info GrB_Vector_nvals // get the number of entries in a vector

(

GrB_Index *nvals, // vector has nvals entries

const GrB_Vector v // vector to query

) ;

GrB_Vector_nvals returns the number of entries in a vector. Roughly
analogous to nvals = nnz(v) in MATLAB, except that the implicit value
in GraphBLAS need not be zero and nnz (short for “number of nonzeros”)
in MATLAB is better described as “number of entries” in GraphBLAS.

6.9.7 GrB Vector build: build a vector from a set of tuples

GrB_Info GrB_Vector_build // build a vector from (I,X) tuples

(

GrB_Vector w, // vector to build

const GrB_Index *I, // array of row indices of tuples

const <type> *X, // array of values of tuples

GrB_Index nvals, // number of tuples

const GrB_BinaryOp dup // binary function to assemble duplicates

) ;

GrB_Vector_build constructs a sparse vector w from a set of tuples, I
and X, each of length nvals. The vector w must have already been initial-
ized with GrB_Vector_new, and it must have no entries in it before calling
GrB_Vector_build. This function is just like GrB_Matrix_build (see Sec-
tion 6.10.8), except that it builds a sparse vector instead of a sparse matrix.
For a description of what GrB_Vector_build does, refer to GrB_Matrix_build.

95

For a vector, the list of column indices J in GrB_Matrix_build is implicitly a
vector of length nvals all equal to zero. Otherwise the methods are identical.

If dup is NULL, any duplicates result in an error. If dup is the special binary
operator GxB_IGNORE_DUP, then any duplicates are ignored. If duplicates
appear, the last one in the list of tuples is taken and the prior ones ignored.
This is not an error. The dup operator cannot be a binary operator created
by GxB_BinaryOp_new_IndexOp.

SPEC: Results are defined even if dup is non-associative and/or non-
commutative.

6.9.8 GrB Vector build Vector: build a vector from a set of tuples

GrB_Info GrB_Vector_build // build a vector from (I,X) tuples

(

GrB_Vector w, // vector to build

const GrB_Vector I_vector, // row indices

const GrB_Vector X_vector, // values

const GrB_BinaryOp dup, // binary function to assemble duplicates

const GrB_Descriptor desc

) ;

GxB_Vector_build_Vector is identical to GrB_Vector_build, except that
the inputs I and X are GrB_Vector objects, each with nvals entries. The
interpretation of I_vector and X_vector are controlled by descriptor set-
tings GxB_ROWINDEX_LIST and GxB_VALUE_LIST, respectively. The method
can use either the indices or values of each of the input vectors; the default
is to use the values. See Section 6.16.4 for details.

6.9.9 GxB Vector build Scalar: build a vector from a set of tuples

GrB_Info GrB_Vector_build // build a vector from (I,scalar) tuples

(

GrB_Vector w, // vector to build

const GrB_Index *I, // array of row indices of tuples

GrB_Scalar scalar, // value for all tuples

GrB_Index nvals // number of tuples

) ;

GxB_Vector_build_Scalar constructs a sparse vector w from a set of
tuples defined by the index array I of length nvals, and a scalar. The

96

scalar is the value of all of the tuples. Unlike GrB_Vector_build, there is
no dup operator to handle duplicate entries. Instead, any duplicates are
silently ignored (if the number of duplicates is desired, simply compare the
input nvals with the value returned by GrB_Vector_nvals after the vector
is constructed). All entries in the sparsity pattern of w are identical, and
equal to the input scalar value.

6.9.10 GxB Vector build Scalar Vector: build a vector from a set of
tuples

GrB_Info GrB_Vector_build // build a vector from (I,scalar) tuples

(

GrB_Vector w, // vector to build

const GrB_Vector I_vector, // row indices

const GrB_Scalar scalar, // value for all tuples

const GrB_Descriptor desc

) ;

GxB_Vector_build_Scalar_Vector is identical to GxB_Vector_build_Scalar,
except that the inputs I and X are GrB_Vector objects, each with nvals en-
tries. The interpretation of I_vector is controlled by the descriptor setting
GxB_ROWINDEX_LIST. The method can use either the indices or values of the
I_input vector; the default is to use the values. See Section 6.16.4 for details.

6.9.11 GrB Vector setElement: add an entry to a vector

GrB_Info GrB_Vector_setElement // w(i) = x

(

GrB_Vector w, // vector to modify

<type> x, // scalar to assign to w(i)

GrB_Index i // index

) ;

GrB_Vector_setElement sets a single entry in a vector, w(i) = x. The
operation is exactly like setting a single entry in an n-by-1 matrix, A(i,0) = x,
where the column index for a vector is implicitly j=0. For further details of
this function, see GrB_Matrix_setElement in Section 6.10.12. If an error
occurs, GrB_error(&err,w) returns details about the error.

97

6.9.12 GrB Vector extractElement: get an entry from a vector

GrB_Info GrB_Vector_extractElement // x = v(i)

(

<type> *x, // scalar extracted (non-opaque, C scalar)

const GrB_Vector v, // vector to extract an entry from

GrB_Index i // index

) ;

GrB_Info GrB_Vector_extractElement // x = v(i)

(

GrB_Scalar x, // GrB_Scalar extracted

const GrB_Vector v, // vector to extract an entry from

GrB_Index i // index

) ;

GrB_Vector_extractElement extracts a single entry from a vector, x = v(i).
The method is identical to extracting a single entry x = A(i,0) from an n-
by-1 matrix; see Section 6.10.13.

6.9.13 GxB Vector isStoredElement: check if entry present in vector

GrB_Info GxB_Vector_isStoredElement

(

const GrB_Vector v, // check presence of entry v(i)

GrB_Index i // index

) ;

GxB_Vector_isStoredElement checks if a single entry v(i) is present,
returning GrB_SUCCESS if the entry is present or GrB_NO_VALUE otherwise.
The value of v(i) is not returned. See also Section 6.10.14.

6.9.14 GrB Vector removeElement: remove an entry from a vector

GrB_Info GrB_Vector_removeElement

(

GrB_Vector w, // vector to remove an entry from

GrB_Index i // index

) ;

GrB_Vector_removeElement removes a single entry w(i) from a vector.
If no entry is present at w(i), then the vector is not modified. If an error
occurs, GrB_error(&err,w) returns details about the error.

98

6.9.15 GrB Vector extractTuples: get all entries from a vector

GrB_Info GrB_Vector_extractTuples // [I,~,X] = find (v)

(

GrB_Index *I, // array for returning row indices of tuples

<type> *X, // array for returning values of tuples

GrB_Index *nvals, // I, X size on input; # tuples on output

const GrB_Vector v // vector to extract tuples from

) ;

GrB_Vector_extractTuples extracts all tuples from a sparse vector,
analogous to [I,~,X] = find(v) in MATLAB/Octave. This function is
identical to its GrB_Matrix_extractTuples counterpart, except that the
array of column indices J does not appear in this function. Refer to Sec-
tion 6.10.16 where further details of this function are described.

6.9.16 GxB Vector extractTuples Vector: get all entries from a vector

GrB_Info GrB_Vector_extractTuples // [I,~,X] = find (v)

(

GrB_Vector I_vector, // row indices

GrB_Vector X_vector, // values

const GrB_Vector V, // vectors to extract tuples from

const GrB_Descriptor desc // currently unused; for future expansion

) ;

GxB_Vector_extractTuples_Vector is identical to GrB_Vector_extractTuples
except that its two outputs are GrB_Vector objects. The vectors I_vector
and X_vector objects must exist on input. On output, any prior content is
erased and their type, dimensions, and values are revised to contain dense
vectors of length nvals.

99

6.9.17 GrB Vector resize: resize a vector

GrB_Info GrB_Vector_resize // change the size of a vector

(

GrB_Vector u, // vector to modify

GrB_Index nrows_new // new number of rows in vector

) ;

GrB_Vector_resize changes the size of a vector. If the dimension de-
creases, entries that fall outside the resized vector are deleted.

6.9.18 GxB Vector diag: extract a diagonal from a matrix

GrB_Info GxB_Vector_diag // extract a diagonal from a matrix

(

GrB_Vector v, // output vector

const GrB_Matrix A, // input matrix

int64_t k,

const GrB_Descriptor desc // unused, except threading control

) ;

GxB_Vector_diag extracts a vector v from an input matrix A, which may
be rectangular. If k = 0, the main diagonal of A is extracted; k > 0 denotes
diagonals above the main diagonal of A, and k < 0 denotes diagonals below
the main diagonal of A. Let A have dimension m-by-n. If k is in the range 0
to n− 1, then v has length min(m,n− k). If k is negative and in the range
-1 to −m+ 1, then v has length min(m+ k, n). If k is outside these ranges,
v has length 0 (this is not an error). This function computes the same thing
as the MATLAB/Octave statement v=diag(A,k) when A is a matrix, except
that GxB_Vector_diag can also do typecasting.

The vector vmust already exist on input, and GrB_Vector_size (&len,v)

must return len = 0 if k ≥ n or k ≤ −m, len = min(m,n− k) if k is in the
range 0 to n− 1, and len = min(m+ k, n) if k is in the range -1 to −m+ 1.
Any existing entries in v are discarded. The type of v is preserved, so that
if the type of A and v differ, the entries are typecasted into the type of v.
Any settings made to v by GrB_set (bitmap switch and sparsity control) are
unchanged.

100

6.9.19 GxB Vector memoryUsage: memory used by a vector

GrB_Info GxB_Vector_memoryUsage // return # of bytes used for a vector

(

size_t *size, // # of bytes used by the vector v

const GrB_Vector v // vector to query

) ;

Returns the memory space required for a vector, in bytes. By default,
any read-only components are not included in the total memory. This can
be changed with via GrB_set; see Section 10.2.

6.9.20 GxB Vector type: type of a vector

GrB_Info GxB_Vector_type // get the type of a vector

(

GrB_Type *type, // returns the type of the vector

const GrB_Vector v // vector to query

) ;

Returns the type of a vector. See GxB_Matrix_type for details (Sec-
tion 6.10.26).

6.9.21 GrB Vector free: free a vector

GrB_Info GrB_free // free a vector

(

GrB_Vector *v // handle of vector to free

) ;

GrB_Vector_free frees a vector. Either usage:

GrB_Vector_free (&v) ;

GrB_free (&v) ;

frees the vector v and sets v to NULL. It safely does nothing if passed a NULL

handle, or if v == NULL on input. Any pending updates to the vector are
abandoned.

101

6.10 GraphBLAS matrices: GrB Matrix

This section describes a set of methods that create, modify, query, and de-
stroy a GraphBLAS sparse matrix, GrB_Matrix:

GraphBLAS function purpose Section
GrB_Matrix_new create a matrix 6.10.1
GrB_Matrix_wait wait for a matrix 6.10.2
GrB_Matrix_dup copy a matrix 6.10.3
GrB_Matrix_clear clear a matrix of all entries 6.10.4
GrB_Matrix_nrows number of rows of a matrix 6.10.5
GrB_Matrix_ncols number of columns of a matrix 6.10.6
GrB_Matrix_nvals number of entries in a matrix 6.10.7
GrB_Matrix_build build a matrix from tuples 6.10.8
GxB_Matrix_build_Vector build a matrix from tuples 6.10.9
GxB_Matrix_build_Scalar build a matrix from tuples 6.10.10
GxB_Matrix_build_Scalar_Vector build a matrix from tuples 6.10.11
GrB_Matrix_setElement add an entry to a matrix 6.10.12
GrB_Matrix_extractElement get an entry from a matrix 6.10.13
GxB_Matrix_isStoredElement check if entry present in matrix 6.10.14
GrB_Matrix_removeElement remove an entry from a matrix 6.10.15
GrB_Matrix_extractTuples get all entries from a matrix 6.10.16
GxB_Matrix_extractTuples_Vector get all entries from a matrix 6.10.17
GrB_Matrix_resize resize a matrix 6.10.18
GxB_Matrix_reshape reshape a matrix 6.10.19
GxB_Matrix_reshapeDup reshape a matrix 6.10.20
GxB_Matrix_concat concatenate matrices 6.10.21
GxB_Matrix_split split a matrix into matrices 6.10.22
GrB_Matrix_diag diagonal matrix from vector 6.10.23
GxB_Matrix_diag diagonal matrix from vector 6.10.24
GxB_Matrix_memoryUsage memory used by a matrix 6.10.25
GxB_Matrix_type type of the matrix 6.10.26
GrB_Matrix_free free a matrix 6.10.27

GrB_Matrix_serializeSize return size of serialized matrix 6.11.3
GrB_Matrix_serialize serialize a matrix 6.11.4
GxB_Matrix_serialize serialize a matrix 6.11.5
GrB_Matrix_deserialize deserialize a matrix 6.11.6
GxB_Matrix_deserialize deserialize a matrix 6.11.7

GrB_get get properties of a matrix 10.10
GrB_set set properties of a matrix 10.10

102

GraphBLAS function purpose Section
GrB_Matrix_import import in various formats 6.14.1
GrB_Matrix_export export in various formats 6.14.2
GrB_Matrix_exportSize array sizes for export 6.14.3
GrB_Matrix_exportHint hint best export format 6.14.4
GxB_Matrix_sort sort a matrix 6.15.2

Refer to Section 6.11 for serialization/deserialization methods, Section 6.14
for GrB import/export methods, Section 6.15 for sorting methods, and Sec-
tion 10.10 for get/set methods.

6.10.1 GrB Matrix new: create a matrix

GrB_Info GrB_Matrix_new // create a new matrix with no entries

(

GrB_Matrix *A, // handle of matrix to create

GrB_Type type, // type of matrix to create

GrB_Index nrows, // matrix dimension is nrows-by-ncols

GrB_Index ncols

) ;

GrB_Matrix_new creates a new nrows-by-ncols sparse matrix with no
entries in it, of the given type. This is analogous to the MATLAB statement
A = sparse (nrows, ncols), except that GraphBLAS can create sparse
matrices of any type.

By default, matrices of size nrows-by-1 are held by column, regardless
of the global setting controlled by GrB_set (GrB_GLOBAL, ...,

GrB_STORAGE_ORIENTATION_HINT), for any value of nrows. Matrices of size
1-by-ncols with ncols not equal to 1 are held by row, regardless of this
global setting. The global setting only affects matrices with both m > 1 and
n > 1. Empty matrices (0-by-0) are also controlled by the global setting.

Once a matrix is created, its format (by-row or by-column) can be arbi-
trarily changed with GrB_set (A, fmt, GrB_STORAGE_ORIENTATION_HINT)

with fmt equal to GrB_COLMAJOR or GrB_ROWMAJOR.

SPEC: nrows and/or ncols may be zero. as an extension to the speci-
fication.

103

6.10.2 GrB Matrix wait: wait for a matrix

GrB_Info GrB_wait // wait for a matrix

(

GrB_Matrix C, // matrix to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

In non-blocking mode, the computations for a GrB_Matrix may be de-
layed. In this case, the matrix is not yet safe to use by multiple independent
user threads. A user application may force completion of a matrix C via
GrB_Matrix_wait(C,mode). With a mode of GrB_MATERIALIZE, all pending
computations are finished, and afterwards different user threads may simul-
taneously call GraphBLAS operations that use the matrix C as an input
parameter. See Section 10.2.2 if GraphBLAS is compiled without OpenMP.

6.10.3 GrB Matrix dup: copy a matrix

GrB_Info GrB_Matrix_dup // make an exact copy of a matrix

(

GrB_Matrix *C, // handle of output matrix to create

const GrB_Matrix A // input matrix to copy

) ;

GrB_Matrix_dup makes a deep copy of a sparse matrix. In GraphBLAS,
it is possible, and valid, to write the following:

GrB_Matrix A, C ;

GrB_Matrix_new (&A, GrB_FP64, n) ;

C = A ; // C is a shallow copy of A

Then C and A can be used interchangeably. However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one
of them leaves the other as a dangling handle that should not be used. If
two different matrices are needed, then this should be used instead:

GrB_Matrix A, C ;

GrB_Matrix_new (&A, GrB_FP64, n) ;

GrB_Matrix_dup (&C, A) ; // like C = A, but making a deep copy

Then C and A are two different matrices that currently have the same set
of values, but they do not depend on each other. Modifying one has no effect
on the other. The GrB_NAME is copied into the new matrix.

104

6.10.4 GrB Matrix clear: clear a matrix of all entries

GrB_Info GrB_Matrix_clear // clear a matrix of all entries;

(// type and dimensions remain unchanged

GrB_Matrix A // matrix to clear

) ;

GrB_Matrix_clear clears all entries from a matrix. All values A(i,j)

are now equal to the implicit value, depending on what semiring ring is used
to perform computations on the matrix. The pattern of A is empty, just as
if it were created fresh with GrB_Matrix_new. Analogous with A (:,:) = 0

in MATLAB. The type and dimensions of A do not change. Any pending
updates to the matrix are discarded.

6.10.5 GrB Matrix nrows: return the number of rows of a matrix

GrB_Info GrB_Matrix_nrows // get the number of rows of a matrix

(

GrB_Index *nrows, // matrix has nrows rows

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_nrows returns the number of rows of a matrix (nrows=size(A,1)
in MATLAB).

6.10.6 GrB Matrix ncols: return the number of columns of a matrix

GrB_Info GrB_Matrix_ncols // get the number of columns of a matrix

(

GrB_Index *ncols, // matrix has ncols columns

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_ncols returns the number of columns of a matrix (ncols=size(A,2)
in MATLAB).

105

6.10.7 GrB Matrix nvals: return the number of entries in a matrix

GrB_Info GrB_Matrix_nvals // get the number of entries in a matrix

(

GrB_Index *nvals, // matrix has nvals entries

const GrB_Matrix A // matrix to query

) ;

GrB_Matrix_nvals returns the number of entries in a matrix. Roughly
analogous to nvals = nnz(A) in MATLAB, except that the implicit value
in GraphBLAS need not be zero and nnz (short for “number of nonzeros”)
in MATLAB is better described as “number of entries” in GraphBLAS.

6.10.8 GrB Matrix build: build a matrix from a set of tuples

GrB_Info GrB_Matrix_build // build a matrix from (I,J,X) tuples

(

GrB_Matrix C, // matrix to build

const GrB_Index *I, // array of row indices of tuples

const GrB_Index *J, // array of column indices of tuples

const <type> *X, // array of values of tuples

GrB_Index nvals, // number of tuples

const GrB_BinaryOp dup // binary function to assemble duplicates

) ;

GrB_Matrix_build constructs a sparse matrix C from a set of tuples, I,
J, and X, each of length nvals. The matrix C must have already been initial-
ized with GrB_Matrix_new, and it must have no entries in it before calling
GrB_Matrix_build. Thus the dimensions and type of C are not changed by
this function, but are inherited from the prior call to GrB_Matrix_new or
GrB_matrix_dup.

An error is returned (GrB_INDEX_OUT_OF_BOUNDS) if any row index in I

is greater than or equal to the number of rows of C, or if any column index
in J is greater than or equal to the number of columns of C

Any duplicate entries with identical indices are assembled using the bi-
nary dup operator provided on input. All three types (x, y, z for z=dup(x,y))
must be identical. The types of dup, C and X must all be compatible. See
Section 2.4 regarding typecasting and compatibility. The values in X are type-
casted, if needed, into the type of dup. Duplicates are then assembled into a
matrix T of the same type as dup, using T(i,j) = dup (T (i,j), X (k)).

106

After T is constructed, it is typecasted into the result C. That is, typecasting
does not occur at the same time as the assembly of duplicates.

If dup is NULL, any duplicates result in an error. If dup is the special binary
operator GxB_IGNORE_DUP, then any duplicates are ignored. If duplicates
appear, the last one in the list of tuples is taken and the prior ones ignored.
This is not an error.

SPEC: As an extension to the specification, results are defined even if
dup is non-associative and/or non-commutative.

The GraphBLAS API requires dup to be associative so that entries can
be assembled in any order, and states that the result is undefined if dup is
not associative. However, SuiteSparse:GraphBLAS guarantees a well-defined
order of assembly. Entries in the tuples [I,J,X] are first sorted in increasing
order of row and column index, with ties broken by the position of the tuple
in the [I,J,X] list. If duplicates appear, they are assembled in the order
they appear in the [I,J,X] input. That is, if the same indices i and j appear
in positions k1, k2, k3, and k4 in [I,J,X], where k1 < k2 < k3 < k4, then
the following operations will occur in order:

T (i,j) = X (k1) ;

T (i,j) = dup (T (i,j), X (k2)) ;

T (i,j) = dup (T (i,j), X (k3)) ;

T (i,j) = dup (T (i,j), X (k4)) ;

This is a well-defined order but the user should not depend upon it when
using other GraphBLAS implementations since the GraphBLAS API does
not require this ordering.

However, SuiteSparse:GraphBLAS guarantees this ordering, even when it
compute the result in parallel. With this well-defined order, several operators
become very useful. In particular, the SECOND operator results in the last
tuple overwriting the earlier ones. The FIRST operator means the value of
the first tuple is used and the others are discarded.

The acronym dup is used here for the name of binary function used for
assembling duplicates, but this should not be confused with the _dup suffix
in the name of the function GrB_Matrix_dup. The latter function does not
apply any operator at all, nor any typecasting, but simply makes a pure deep
copy of a matrix.

The parameter X is a pointer to any C equivalent built-in type, or a
void * pointer. The GrB_Matrix_build function uses the _Generic feature

107

of C11 to detect the type of pointer passed as the parameter X. If X is a
pointer to a built-in type, then the function can do the right typecasting. If
X is a void * pointer, then it can only assume X to be a pointer to a user-
defined type that is the same user-defined type of C and dup. This function
has no way of checking this condition that the void * X pointer points to
an array of the correct user-defined type, so behavior is undefined if the user
breaks this condition.

The GrB_Matrix_build method is analogous to C = sparse (I,J,X)

in MATLAB, with several important extensions that go beyond that which
MATLAB can do. In particular, the MATLAB sparse function only pro-
vides one option for assembling duplicates (summation), and it can only
build double, double complex, and logical sparse matrices. The dup operator
cannot be a binary operator created by GxB_BinaryOp_new_IndexOp.

6.10.9 GxB Matrix build Vector: build a matrix from a set of tuples

GrB_Info GrB_Matrix_build // build a matrix from (I,J,X) tuples

(

GrB_Matrix C, // matrix to build

const GrB_Vector I_vector, // row indices

const GrB_Vector J_vector, // col indices

const GrB_Vector X_vector, // values

const GrB_BinaryOp dup, // binary function to assemble duplicates

const GrB_Descriptor desc

) ;

GxB_Matrix_build_Vector is identical to GrB_Matrix_build, except that
the inputs I, J, and X are GrB_Vector objects, each with nvals entries. The
interpretation of I_vector, J_vector, and X_vector are controlled by de-
scriptor settings GxB_ROWINDEX_LIST, GxB_COLINDEX_LIST, and GxB_VALUE_LIST,
respectively. The method can use either the indices or values of each of the
input vectors; the default is to use the values. See Section 6.16.4 for details.

108

6.10.10 GxB Matrix build Scalar: build a matrix from a set of tuples

GrB_Info GrB_Matrix_build // build a matrix from (I,J,scalar) tuples

(

GrB_Matrix C, // matrix to build

const GrB_Index *I, // array of row indices of tuples

const GrB_Index *J, // array of column indices of tuples

GrB_Scalar scalar, // value for all tuples

GrB_Index nvals // number of tuples

) ;

GxB_Matrix_build_Scalar constructs a sparse matrix C from a set of
tuples defined the index arrays I and J of length nvals, and a scalar. The
scalar is the value of all of the tuples. Unlike GrB_Matrix_build, there is
no dup operator to handle duplicate entries. Instead, any duplicates are
silently ignored (if the number of duplicates is desired, simply compare the
input nvals with the value returned by GrB_Vector_nvals after the matrix
is constructed). All entries in the sparsity pattern of C are identical, and
equal to the input scalar value.

6.10.11 GxB Matrix build Scalar Vector: build a matrix from a set of
tuples

GrB_Info GrB_Matrix_build // build a matrix from (I,J,scalar) tuples

(

GrB_Matrix C, // matrix to build

const GrB_Vector I_vector, // row indices

const GrB_Vector J_vector, // col indices

GrB_Scalar scalar, // value for all tuples

const GrB_Descriptor desc

) ;

GxB_Matrix_build_Scalar_Vector is identical to GxB_Matrix_build_Scalar,
except that the inputs I, J, and X are GrB_Vector objects, each with nvals

entries. The interpretation of I_vector and J_vector are controlled by
descriptor settings GxB_ROWINDEX_LIST and GxB_VALUE_LIST, respectively.
The method can use either the indices or values of the I_input and J_vector

vectors; the default is to use the values. See Section 6.16.4 for details.

109

6.10.12 GrB Matrix setElement: add an entry to a matrix

GrB_Info GrB_Matrix_setElement // C (i,j) = x

(

GrB_Matrix C, // matrix to modify

<type> x, // scalar to assign to C(i,j)

GrB_Index i, // row index

GrB_Index j // column index

) ;

GrB_Matrix_setElement sets a single entry in a matrix, C(i,j)=x. If the
entry is already present in the pattern of C, it is overwritten with the new
value. If the entry is not present, it is added to C. In either case, no entry
is ever deleted by this function. Passing in a value of x=0 simply creates an
explicit entry at position (i,j) whose value is zero, even if the implicit value
is assumed to be zero.

An error is returned (GrB_INVALID_INDEX) if the row index i is greater
than or equal to the number of rows of C, or if the column index j is greater
than or equal to the number of columns of C. Note that this error code
differs from the same kind of condition in GrB_Matrix_build, which re-
turns GrB_INDEX_OUT_OF_BOUNDS. This is because GrB_INVALID_INDEX is an
API error, and is caught immediately even in non-blocking mode, whereas
GrB_INDEX_OUT_OF_BOUNDS is an execution error whose detection may wait
until the computation completes sometime later.

The scalar x is typecasted into the type of C. Any value can be passed
to this function and its type will be detected, via the _Generic feature of
C11. For a user-defined type, x is a void * pointer that points to a memory
space holding a single entry of this user-defined type. This user-defined type
must exactly match the user-defined type of C since no typecasting is done
between user-defined types. If x is a GrB_Scalar and contains no entry, then
the entry C(i,j) is removed (if it exists). The action taken is identical to
GrB_Matrix_removeElement(C,i,j) in this case.

Performance considerations: SuiteSparse:GraphBLAS exploits the
non-blocking mode to greatly improve the performance of this method. Re-
fer to the example shown in Section 2.2. If the entry exists in the pattern
already, it is updated right away and the work is not left pending. Otherwise,
it is placed in a list of pending updates, and the later on the updates are done
all at once, using the same algorithm used for GrB_Matrix_build. In other
words, setElement in SuiteSparse:GraphBLAS builds its own internal list of

110

tuples [I,J,X], and then calls GrB_Matrix_build whenever the matrix is
needed in another computation, or whenever GrB_Matrix_wait is called.

As a result, if calls to setElement are mixed with calls to most other
methods and operations (even extractElement) then the pending updates
are assembled right away, which will be slow. Performance will be good if
many setElement updates are left pending, and performance will be poor if
the updates are assembled frequently.

A few methods and operations can be intermixed with setElement, in
particular, some forms of the GrB_assign and GxB_subassign operations are
compatible with the pending updates from setElement. Section 12.11 gives
more details on which GxB_subassign and GrB_assign operations can be in-
terleaved with calls to setElement without forcing updates to be assembled.
Other methods that do not access the existing entries may also be done
without forcing the updates to be assembled, namely GrB_Matrix_clear

(which erases all pending updates), GrB_Matrix_free, GrB_Matrix_ncols,
GrB_Matrix_nrows, GrB_get, and of course GrB_Matrix_setElement itself.
All other methods and operations cause the updates to be assembled. Future
versions of SuiteSparse:GraphBLAS may extend this list.

See Section 17.2 for an example of how to use GrB_Matrix_setElement.
If an error occurs, GrB_error(&err,C) returns details about the error.

6.10.13 GrB Matrix extractElement: get an entry from a matrix

GrB_Info GrB_Matrix_extractElement // x = A(i,j)

(

<type> *x, // extracted scalar (non-opaque C scalar)

const GrB_Matrix A, // matrix to extract a scalar from

GrB_Index i, // row index

GrB_Index j // column index

) ;

GrB_Info GrB_Matrix_extractElement // x = A(i,j)

(

GrB_Scalar x, // extracted GrB_Scalar

const GrB_Matrix A, // matrix to extract a scalar from

GrB_Index i, // row index

GrB_Index j // column index

) ;

GrB_Matrix_extractElement extracts a single entry from a matrix x=A(i,j).
An error is returned (GrB_INVALID_INDEX) if the row index i is greater than

111

or equal to the number of rows of C, or if column index j is greater than
or equal to the number of columns of C. If the entry is present, x=A(i,j) is
performed and the scalar x is returned with this value. The method returns
GrB_SUCCESS. If no entry is present at A(i,j), and x is a non-opaque C scalar,
then x is not modified, and the return value of GrB_Matrix_extractElement
is GrB_NO_VALUE. If x is a GrB_Scalar, then x is returned as an empty scalar
with no entry, and GrB_SUCCESS is returned.

The function knows the type of the pointer x, so it can do typecasting as
needed, from the type of A into the type of x. User-defined types cannot be
typecasted, so if A has a user-defined type then x must be a void * pointer
that points to a memory space the same size as a single scalar of the type of
A.

Currently, this method causes all pending updates from GrB_setElement,
GrB_assign, or GxB_subassign to be assembled, so its use can have perfor-
mance implications. Calls to this function should not be arbitrarily inter-
mixed with calls to these other two functions. Everything will work correctly
and results will be predictable, it will just be slow.

6.10.14 GxB Matrix isStoredElement: check if entry present in matrix

GrB_Info GxB_Matrix_isStoredElement

(

const GrB_Matrix A, // check for A(i,j)

GrB_Index i, // row index

GrB_Index j // column index

) ;

GxB_Matrix_isStoredElement check if the single entry A(i,j) is present
in the matrix A. It returns GrB_SUCCESS if the entry is present, or GrB_NO_VALUE
otherwise. The value of A(i,j) is not returned. It is otherwise identical to
GrB_Matrix_extractElement.

112

6.10.15 GrB Matrix removeElement: remove an entry from a matrix

GrB_Info GrB_Matrix_removeElement

(

GrB_Matrix C, // matrix to remove an entry from

GrB_Index i, // row index

GrB_Index j // column index

) ;

GrB_Matrix_removeElement removes a single entry A(i,j) from a ma-
trix. If no entry is present at A(i,j), then the matrix is not modified. If an
error occurs, GrB_error(&err,A) returns details about the error.

6.10.16 GrB Matrix extractTuples: get all entries from a matrix

GrB_Info GrB_Matrix_extractTuples // [I,J,X] = find (A)

(

GrB_Index *I, // array for returning row indices of tuples

GrB_Index *J, // array for returning col indices of tuples

<type> *X, // array for returning values of tuples

GrB_Index *nvals, // I,J,X size on input; # tuples on output

const GrB_Matrix A // matrix to extract tuples from

) ;

GrB_Matrix_extractTuples extracts all the entries from the matrix A,
returning them as a list of tuples, analogous to [I,J,X]=find(A) in MAT-
LAB. Entries in the tuples [I,J,X] are unique. No pair of row and column
indices (i,j) appears more than once.

The GraphBLAS API states the tuples can be returned in any order.
If GrB_wait is called first, then SuiteSparse:GraphBLAS chooses to always
return them in sorted order, depending on whether the matrix is stored by
row or by column. Otherwise, the indices can be returned in any order.

The number of tuples in the matrix A is given by GrB_Matrix_nvals(&anvals,A).
If anvals is larger than the size of the arrays (nvals in the parameter list),
an error GrB_INSUFFICIENT_SIZE is returned, and no tuples are extracted. If
nvals is larger than anvals, then only the first anvals entries in the arrays
I J, and X are modified, containing all the tuples of A, and the rest of I J,
and X are left unchanged. On output, nvals contains the number of tuples
extracted.

113

SPEC: As an extension to the specification, the arrays I, J, and/or X
may be passed in as NULL pointers. GrB_Matrix_extractTuples does
not return a component specified as NULL. This is not an error condition.

6.10.17 GxB Matrix extractTuples Vector: get all entries from a matrix

GrB_Info GrB_Matrix_extractTuples // [I,J,X] = find (A)

(

GrB_Vector I_vector, // row indices

GrB_Vector J_vector, // col indices

GrB_Vector X_vector, // values

const GrB_Matrix A, // matrix to extract tuples from

const GrB_Descriptor desc // currently unused; for future expansion

) ;

GxB_Matrix_extractTuples_Vector is identical to GrB_Matrix_extractTuples
except that its three outputs are GrB_Vector objects. The vectors I_vector,
J_vector, and X_vector objects must exist on input. On output, any prior
content is erased and their type, dimensions, and values are revised to contain
dense vectors of length nvals.

6.10.18 GrB Matrix resize: resize a matrix

GrB_Info GrB_Matrix_resize // change the size of a matrix

(

GrB_Matrix A, // matrix to modify

const GrB_Index nrows_new, // new number of rows in matrix

const GrB_Index ncols_new // new number of columns in matrix

) ;

GrB_Matrix_resize changes the size of a matrix. If the dimensions
decrease, entries that fall outside the resized matrix are deleted. Unlike
GxB_Matrix_reshape* (see Sections 6.10.19 and 6.10.20), entries remain in
their same position after resizing the matrix.

114

6.10.19 GxB Matrix reshape: reshape a matrix

GrB_Info GxB_Matrix_reshape // reshape a GrB_Matrix in place

(

// input/output:

GrB_Matrix C, // input/output matrix, reshaped in place

// input:

bool by_col, // true if reshape by column, false if by row

GrB_Index nrows_new, // new number of rows of C

GrB_Index ncols_new, // new number of columns of C

const GrB_Descriptor desc

) ;

GxB_Matrix_reshape changes the size of a matrix C, taking entries from
the input matrix either column-wise or row-wise. If matrix C on input is
nrows-by-ncols, and the requested dimensions of C on output are nrows_new-
by-nrows_cols, then the condition nrows*ncols == nrows_new*nrows_cols

must hold. The matrix C is modified in-place, as both an input and output for
this method. To create a new matrix, use GxB_Matrix_reshapeDup instead
(Section 6.10.20).

For example, if C is 3-by-4 on input, and is reshaped column-wise to have
dimensions 2-by-6:

C on input C on output (by_col true)

00 01 02 03 00 20 11 02 22 13

10 11 12 13 10 01 21 12 03 23

20 21 22 23

If the same C on input is reshaped row-wise to dimensions 2-by-6:

C on input C on output (by_col false)

00 01 02 03 00 01 02 03 10 11

10 11 12 13 12 13 20 21 22 23

20 21 22 23

NOTE: because an intermediate linear index must be computed for each
entry, GxB_Matrix_reshape cannot be used on matrices for which nrows*ncols
exceeds 260.

115

6.10.20 GxB Matrix reshapeDup: reshape a matrix

GrB_Info GxB_Matrix_reshapeDup // reshape a GrB_Matrix into another GrB_Matrix

(

// output:

GrB_Matrix *C, // newly created output matrix, not in place

// input:

GrB_Matrix A, // input matrix, not modified

bool by_col, // true if reshape by column, false if by row

GrB_Index nrows_new, // number of rows of C

GrB_Index ncols_new, // number of columns of C

const GrB_Descriptor desc

) ;

GxB_Matrix_reshapeDup is identical to GxB_Matrix_reshape (see Sec-
tion 6.10.19), except that creates a new output matrix C that is reshaped
from the input matrix A.

6.10.21 GxB Matrix concat: concatenate matrices

GrB_Info GxB_Matrix_concat // concatenate a 2D array of matrices

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix *Tiles, // 2D row-major array of size m-by-n

const GrB_Index m,

const GrB_Index n,

const GrB_Descriptor desc // unused, except threading control

) ;

GxB_Matrix_concat concatenates an array of matrices (Tiles) into a
single GrB_Matrix C.

Tiles is an m-by-n dense array of matrices held in row-major format,
where Tiles [i*n+j] is the (i, j)th tile, and where m > 0 and n > 0 must
hold. Let Ai,j denote the (i, j)th tile. The matrix C is constructed by con-
catenating these tiles together, as:

C =


A0,0 A0,1 A0,2 · · · A0,n−1

A1,0 A1,1 A1,2 · · · A1,n−1

· · ·
Am−1,0 Am−1,1 Am−1,2 · · · Am−1,n−1


On input, the matrix C must already exist. Any existing entries in C are

discarded. C must have dimensions nrows by ncols where nrows is the sum

116

of the number of rows in the matrices Ai,0 for all i, and ncols is the sum
of the number of columns in the matrices A0,j for all j. All matrices in any
given tile row i must have the same number of rows (that is, and all matrices
in any given tile column j must have the same number of columns).

The type of C is unchanged, and all matrices Ai,j are typecasted into the
type of C. Any settings made to C by GrB_set (format by row or by column,
bitmap switch, hyper switch, and sparsity control) are unchanged.

6.10.22 GxB Matrix split: split a matrix

GrB_Info GxB_Matrix_split // split a matrix into 2D array of matrices

(

GrB_Matrix *Tiles, // 2D row-major array of size m-by-n

const GrB_Index m,

const GrB_Index n,

const GrB_Index *Tile_nrows, // array of size m

const GrB_Index *Tile_ncols, // array of size n

const GrB_Matrix A, // input matrix to split

const GrB_Descriptor desc // unused, except threading control

) ;

GxB_Matrix_split does the opposite of GxB_Matrix_concat. It splits a
single input matrix A into a 2D array of tiles. On input, the Tiles array
must be a non-NULL pointer to a previously allocated array of size at least
m*n where both m and n must be greater than zero. The Tiles_nrows array
has size m, and Tiles_ncols has size n. The (i, j)th tile has dimension
Tiles_nrows[i]-by-Tiles_ncols[j]. The sum of Tiles_nrows [0:m-1]

must equal the number of rows of A, and the sum of Tiles_ncols [0:n-1]

must equal the number of columns of A. The type of each tile is the same as
the type of A; no typecasting is done.

6.10.23 GrB Matrix diag: construct a diagonal matrix

GrB_Info GrB_Matrix_diag // construct a diagonal matrix from a vector

(

GrB_Matrix *C, // output matrix

const GrB_Vector v, // input vector

int64_t k

) ;

GrB_Matrix_diag constructs a matrix from a vector. Let n be the length
of the v vector, from GrB_Vector_size (&n, v). If k = 0, then C is an

117

n-by-n diagonal matrix with the entries from v along the main diagonal
of C, with C(i,i)=v(i). If k is nonzero, C is square with dimension n +
|k|. If k is positive, it denotes diagonals above the main diagonal, with
C(i,i+k)=v(i). If k is negative, it denotes diagonals below the main diag-
onal of C, with C(i-k,i)=v(i). This behavior is identical to the MATLAB
statement C=diag(v,k), where v is a vector.

The output matrix C is a newly-constructed square matrix with the same
type as the input vector v. No typecasting is performed.

6.10.24 GxB Matrix diag: build a diagonal matrix

GrB_Info GxB_Matrix_diag // build a diagonal matrix from a vector

(

GrB_Matrix C, // output matrix

const GrB_Vector v, // input vector

int64_t k,

const GrB_Descriptor desc // unused, except threading control

) ;

Identical to GrB_Matrix_diag, except for the extra parameter (a descriptor
to provide control over the number of threads used), and this method is not
a constructor.

The matrix C must already exist on input, of the correct size. It must be
square of dimension n + |k| where the vector v has length n. Any existing
entries in C are discarded. The type of C is preserved, so that if the type of C
and v differ, the entries are typecasted into the type of C. Any settings made
to C by GrB_set (format by row or by column, bitmap switch, hyper switch,
and sparsity control) are unchanged.

6.10.25 GxB Matrix memoryUsage: memory used by a matrix

GrB_Info GxB_Matrix_memoryUsage // return # of bytes used for a matrix

(

size_t *size, // # of bytes used by the matrix A

const GrB_Matrix A // matrix to query

) ;

Returns the memory space required for a matrix, in bytes. By default,
any read-only components are not included in the total memory. This can
be changed with via GrB_set; see Section 10.2.

118

6.10.26 GxB Matrix type: type of a matrix

GrB_Info GxB_Matrix_type // get the type of a matrix

(

GrB_Type *type, // returns the type of the matrix

const GrB_Matrix A // matrix to query

) ;

Returns the type of a matrix. The type parameter is not allocated.
Calling GxB_Matrix_type is identical to making a shallow pointer copy of
the type used to create a matrix. In particular, suppose a matrix is created,
and a copy of its type is saved at the same time:

GrB_Matrix_new (&A, atype, m, n) ;

GrB_Type save_type = atype ;

Sometime later, while the matrix A and its type atype have not been
freed, the following two code fragments are identical:

// using GxB_Matrix_type:

GrB_Type atype2 ;

GxB_Matrix_type (&atype2, A) ;

assert (atype2 == save_type) ;

// without GxB_Matrix_type:

GrB_Type atype2 = save_type ;

As a result, freeing atype2 would be the same as freeing the original
atype.

6.10.27 GrB Matrix free: free a matrix

GrB_Info GrB_free // free a matrix

(

GrB_Matrix *A // handle of matrix to free

) ;

GrB_Matrix_free frees a matrix. Either usage:

GrB_Matrix_free (&A) ;

GrB_free (&A) ;

frees the matrix A and sets A to NULL. It safely does nothing if passed a NULL

handle, or if A == NULL on input. Any pending updates to the matrix are
abandoned.

119

6.11 Serialize/deserialize methods

Serialization takes an opaque GraphBLAS object (a vector or matrix) and
encodes it in a single non-opaque array of bytes, the blob. The blob can only
be deserialized by the same library that created it (SuiteSparse:GraphBLAS
in this case). The array of bytes can be written to a file, sent to another
process over an MPI channel, or operated on in any other way that moves
the bytes around. The contents of the array cannot be interpreted except
by deserialization back into a vector or matrix, by the same library (and
sometimes the same version) that created the blob.

All versions of SuiteSparse:GraphBLAS that implement serialization/deserialization
use essentially the same format for the blob, so the library versions are com-
patible with each other. Version v9.0.0 adds the GrB_NAME and GrB_EL_TYPE_STRING
to the blob in an upward compatible manner, so that older versions of Suite-
Sparse:GraphBLAS can read the blobs created by v9.0.0; they simply ignore
those components.

SuiteSparse:GraphBLAS v10 adds 32/64-bit integers, and can read the
blobs created by any prior version of GraphBLAS (they are deserialized with
all 64-bit integers however). If an older version of SuiteSparse:GraphBLAS
(v9 or earlier) attempts to deserialize a blob containing a matrix with 32-bit
integers, it will safely report that the blob is invalid and refuse to deserialize
it. If SuiteSparse:GraphBLAS v10 creates a serialized blob with all-64-bit
integers, then it can be read correctly by SuiteSparse:GraphBLAS v9, and
likely also by earlier versions of the library.

There are two forms of serialization: GrB*serialize and GxB*serialize.
For the GrB form, the blob must first be allocated by the user application,
and it must be large enough to hold the serialized matrix or vector. By
contrast GxB*serialize allocates the blob itself.

By default, ZSTD (level 1) compression is used for serialization, but
other options can be selected via the descriptor: GrB_set (desc, method,

GxB_COMPRESSION), where method is an integer selected from the following
options:

method description
GxB_COMPRESSION_NONE no compression
GxB_COMPRESSION_DEFAULT ZSTD, with default level 1
GxB_COMPRESSION_LZ4 LZ4
GxB_COMPRESSION_LZ4HC LZ4HC, with default level 9
GxB_COMPRESSION_ZSTD ZSTD, with default level 1

120

The LZ4HC method can be modified by adding a level of zero to 9, with
9 being the default. Higher levels lead to a more compact blob, at the cost
of extra computational time. This level is simply added to the method, so
to compress a vector with LZ4HC with level 6, use:

GrB_set (desc, GxB_COMPRESSION_LZ4HC + 6, GxB_COMPRESSION) ;

The ZSTD method can be specified as level 1 to 19, with 1 being the
default. To compress with ZSTD at level 6, use:

GrB_set (desc, GxB_COMPRESSION_ZSTD + 6, GxB_COMPRESSION) ;

Deserialization of untrusted data is a common security problem; see
https://cwe.mitre.org/data/definitions/502.html. The deserialization methods
in SuiteSparse:GraphBLAS do a few basic checks so that no out-of-bounds
access occurs during deserialization, but the output matrix or vector itself
may still be corrupted. If the data is untrusted, use GxB_*_fprint with the
print level set to GxB_SILENT to check the matrix or vector after deserializing
it:

info = GxB_Vector_fprint (w, "w deserialized", GxB_SILENT, NULL) ;

if (info != GrB_SUCCESS) GrB_free (&w) ;

info = GxB_Matrix_fprint (A, "A deserialized", GxB_SILENT, NULL) ;

if (info != GrB_SUCCESS) GrB_free (&A) ;

The following methods are described in this Section:

GraphBLAS function purpose Section
GxB_Vector_serialize serialize a vector 6.11.1
GxB_Vector_deserialize deserialize a vector 6.11.2
GrB_Matrix_serializeSize return size of serialized matrix 6.11.3
GrB_Matrix_serialize serialize a matrix 6.11.4
GxB_Matrix_serialize serialize a matrix 6.11.5
GrB_Matrix_deserialize deserialize a matrix 6.11.6
GxB_Matrix_deserialize deserialize a matrix 6.11.7
GrB_get get blob properties 10.16

121

https://cwe.mitre.org/data/definitions/502.html

6.11.1 GxB Vector serialize: serialize a vector

GrB_Info GxB_Vector_serialize // serialize a GrB_Vector to a blob

(

// output:

void **blob_handle, // the blob, allocated on output

GrB_Index *blob_size_handle, // size of the blob on output

// input:

GrB_Vector u, // vector to serialize

const GrB_Descriptor desc // descriptor to select compression method

) ;

GxB_Vector_serialize serializes a vector into a single array of bytes (the
blob), which is malloc’ed and filled with the serialized vector. By default,
ZSTD (level 1) compression is used, but other options can be selected via
the descriptor. Serializing a vector is identical to serializing a matrix; see
Section 6.11.5 for more information.

6.11.2 GxB Vector deserialize: deserialize a vector

GrB_Info GxB_Vector_deserialize // deserialize blob into a GrB_Vector

(

// output:

GrB_Vector *w, // output vector created from the blob

// input:

GrB_Type type, // type of the vector w. See GxB_Matrix_deserialize.

const void *blob, // the blob

GrB_Index blob_size, // size of the blob

const GrB_Descriptor desc

) ;

This method creates a vector w by deserializing the contents of the blob,
constructed by GxB_Vector_serialize. Deserializing a vector is identical
to deserializing a matrix; see Section 6.11.7 for more information.

The blob is allocated with the malloc function passed to GxB_init, or the
C11 malloc if GrB_init was used to initialize GraphBLAS. The blob must
be freed by the matching free method, either the free function passed to
GxB_init or the C11 free if GrB_init was used.

122

6.11.3 GrB Matrix serializeSize: return size of serialized matrix

GrB_Info GrB_Matrix_serializeSize // estimate the size of a blob

(

// output:

GrB_Index *blob_size_handle, // upper bound on the required size of the

// blob on output.

// input:

GrB_Matrix A // matrix to serialize

) ;

GrB_Matrix_serializeSize returns an upper bound on the size of the
blob needed to serialize a GrB_Matrix with GrB_Matrix_serialize. Af-
ter the matrix is serialized, the actual size used is returned, and the blob
may be realloc’d to that size if desired. This method is not required for
GxB_Matrix_serialize.

6.11.4 GrB Matrix serialize: serialize a matrix

GrB_Info GrB_Matrix_serialize // serialize a GrB_Matrix to a blob

(

// output:

void *blob, // the blob, already allocated in input

// input/output:

GrB_Index *blob_size_handle, // size of the blob on input. On output,

// the # of bytes used in the blob.

// input:

GrB_Matrix A // matrix to serialize

) ;

GrB_Matrix_serialize serializes a matrix into a single array of bytes
(the blob), which must be already allocated by the user application. On
input, &blob_size is the size of the allocated blob in bytes. On output,
it is reduced to the numbed of bytes actually used to serialize the matrix.
After calling GrB_Matrix_serialize, the blob may be realloc’d to this
revised size if desired (this is optional). ZSTD (level 1) compression is used
to construct a compact blob.

123

6.11.5 GxB Matrix serialize: serialize a matrix

GrB_Info GxB_Matrix_serialize // serialize a GrB_Matrix to a blob

(

// output:

void **blob_handle, // the blob, allocated on output

GrB_Index *blob_size_handle, // size of the blob on output

// input:

GrB_Matrix A, // matrix to serialize

const GrB_Descriptor desc // descriptor to select compression method

) ;

GxB_Matrix_serialize is identical to GrB_Matrix_serialize, except
that it does not require a pre-allocated blob. Instead, it allocates the blob
internally, and fills it with the serialized matrix. By default, ZSTD (level 1)
compression is used, but other options can be selected via the descriptor.

The blob is allocated with the malloc function passed to GxB_init, or the
C11 malloc if GrB_init was used to initialize GraphBLAS. The blob must
be freed by the matching free method, either the free function passed to
GxB_init or the C11 free if GrB_init was used.

6.11.6 GrB Matrix deserialize: deserialize a matrix

GrB_Info GrB_Matrix_deserialize // deserialize blob into a GrB_Matrix

(

// output:

GrB_Matrix *C, // output matrix created from the blob

// input:

GrB_Type type, // type of the matrix C. Required if the blob holds a

// matrix of user-defined type. May be NULL if blob

// holds a built-in type; otherwise must match the

// type of C.

const void *blob, // the blob

GrB_Index blob_size // size of the blob

) ;

This method creates a matrix A by deserializing the contents of the blob,
constructed by either GrB_Matrix_serialize or GxB_Matrix_serialize.

The type may be NULL if the blob holds a serialized matrix with a built-in
type. In this case, the type is determined automatically. For user-defined
types, the type must match the type of the matrix in the blob. The GrB_get
method can be used to query the blob for the name of this type.

124

6.11.7 GxB Matrix deserialize: deserialize a matrix

GrB_Info GxB_Matrix_deserialize // deserialize blob into a GrB_Matrix

(

// output:

GrB_Matrix *C, // output matrix created from the blob

// input:

GrB_Type type, // type of the matrix C. Required if the blob holds a

// matrix of user-defined type. May be NULL if blob

// holds a built-in type; otherwise must match the

// type of C.

const void *blob, // the blob

GrB_Index blob_size, // size of the blob

const GrB_Descriptor desc

) ;

Identical to GrB_Matrix_deserialize.

125

6.12 The GxB Container object and its methods

A new set of load/unload methods are introduced in GraphBLAS v10 to
move data between a GrB_Matrix or GrB_Vector and a new GxB_Container

object. This object is non-opaque but contains opaque objects. Its primary
components are five dense GrB_Vectors that hold the contents of the ma-
trix/vector. The data in these dense vectors can then be loaded/unloaded
via GxB_Vector_load and GxB_Vector_unload.

Moving data from a GrB_Matrix into user-visible C arrays is a two-step
process. The data is first moved into a GxB_Container using
GxB_unload_Matrix_into_Container, and then from the Container into
C arrays with GxB_Vector_unload. Moving data in the opposite direc-
tion is also a two-step process: first load the C array into a GrB_Vector

component of a GxB_Container with GxB_Vector_load, and then from the
GxB_Container into a GrB_Matrix using the GxB_load_Matrix_from_Container
method.

The following methods are available. The first two do not use the Con-
tainer object, but instead move data to/from a dense GrB_Vector:

� GxB_Vector_load: this method moves data in O(1) time from a user-
visible C array into a GrB_Vector. The vector length and type are
revised to match the new data from the C array. Ownership is normally
transferred to the GrB_Vector, but this can be revised with a handling
parameter. The C array is passed in as a void * pointer, and its type
is indicated by a GrB_Type parameter. See Section 6.12.1 for details.

� GxB_Vector_unload: this method moves data in O(1) time from a
GrB_Vector into a user-visible C array. The length of the GrB_Vector
is reduced to zero, to denote that it no longer holds any content. The
vector must be dense; it must have the same number of entries as its
size (that is GrB_Vector_nvals and GrB_Vector_size must return the
same value). The C array is returned as a void * pointer, and its type
is indicated by a GrB_Type parameter. See Section 6.12.2 for details.

The next six methods rely on the GxB_Container object:

� GxB_Container_new: creates a container (see Section 6.12.3).

� GxB_Container_free: frees a container (see Section 6.12.4).

126

� GxB_load_Matrix_from_Container: moves all of the data from a GxB_Container
into a GrB_Matrix in O(1) time (see Section 6.12.5).

� GxB_load_Vector_from_Container: moves all of the data from a GxB_Container
into a GrB_Vector in O(1) time (see Section 6.12.6).

� GxB_unload_Matrix_into_Container: moves all of the data from a
GrB_Matrix into a GxB_Container in O(1) time (see Section 6.12.7).

� GxB_unload_Vector_into_Container: moves all of the data from a
GrB_Vector into a GxB_Container in O(1) time (see Section 6.12.8).

6.12.1 GxB Vector load: load data into a vector

GrB_Info GxB_Vector_load

(

// input/output:

GrB_Vector V, // vector to load from the C array X

void **X, // numerical array to load into V

// input:

GrB_Type type, // type of X

uint64_t n, // # of entries in X

uint64_t X_size, // size of X in bytes (at least n*(sizeof the type))

int handling, // GrB_DEFAULT (0): transfer ownership to GraphBLAS

// GxB_IS_READONLY: X treated as read-only;

// ownership kept by the user application

const GrB_Descriptor desc // currently unused; for future expansion

) ;

GxB_Vector_load loads data from a C array into a GrB_Vector in O(1)
time.

On input, the GrB_Vector V must already exist, but its content (type,
size, and entries) are ignored. On output, any prior content of V is freed, and
its data is replaced with the C array X of length n entries, whose type is given
by the type parameter. The size of V becomes n, and its type is changed to
match the type parameter.

After this method returns, GrB_Vector_size and GrB_Vector_nvals will
both return n. That is, the vector V is a dense vector. It is held in the
GxB_FULL data format, in GrB_COLMAJOR orientation.

The size in bytes of X is also provided on input as X_size; this must be
at least n times the size of the given type, but it can be larger. This size

127

is maintained and returned to the user application by GxB_Vector_unload.
The error code GrB_INVALID_VALUE is returned if X_size is too small.

The handling parameter provides control over the ownership of the array
X. By default, ownership of X is handed over to the GrB_Vector V. In this
case, the vector V acts as a normal GraphBLAS vector. It can be modified or
freed as usual. Freeing V with GrB_Vector_free will also free X. The array
X is returned as NULL to denote this change of ownership.

If the handling parameter is GxB_IS_READONLY, then X is still owned
by the user application. It remains non-NULL when this method returns.
The resulting vector V can be used as an input to any GraphBLAS method,
but it cannot be modified (except that it can be freed). If a call is made
that attempts to modify a matrix with read-only components, an error is
returned (GxB_OUTPUT_IS_READONLY). Freeing the vector V does not modify
X, however. It simply frees the rest of the object V.

Note that this method does not rely on the GxB_Container object. In-
stead, it loads a C array X directly into a dense GrB_Vector V.

6.12.2 GxB Vector unload: unload data from a vector

GrB_Info GxB_Vector_unload

(

// input/output:

GrB_Vector V, // vector to unload

void **X, // numerical array to unload from V

// output:

GrB_Type *type, // type of X

uint64_t *n, // # of entries in X

uint64_t *X_size, // size of X in bytes (at least n*(sizeof the type))

int *handling, // see GxB_Vector_load

const GrB_Descriptor desc // currently unused; for future expansion

) ;

GxB_Vector_unload unloads data from GrB_Vector into a C array in
O(1) time (unless the vector has pending work that must be finished first).

On input, the vector V must have all possible entries present (that is,
GrB_Vector_nvals and GrB_Vector_size must return the same value). The
vector can be in any internal data format; it does not have to be in the
GxB_FULL format on input, but it must be in GrB_COLMAJOR orientation. If
any entries are missing, the unload is not performed and GrB_INVALID_OBJECT
is returned.

128

On output, the size of V is reduced to zero, and it holds no entries but
its type is unchanged. The array X is returned to the caller with the entries
from the vector. The type of X is given by the type parameter. The number
of entries in V is returned as n. The size of X in bytes is returned as X_size.

The handling parameter informs the user application of the ownership of
the array X. If it was created by GraphBLAS, or passed into GraphBLAS via
GxB_Vector_load with handling set to GrB_DEFAULT, then this is returned
to the user as handling set to GrB_DEFAULT. This denotes that ownership of
the array X has been transfered from GraphBLAS to the user application.
The user application is now responsible for freeing the array X.

If the handling parameter is returned as GxB_IS_READONLY, then this
array X was originally passed to GraphBLAS via GxB_Vector_load with a
handling parameter of GxB_IS_READONLY. The ownership of the array X is
not changed; it remains owned by the user application. The user application
is still responsible for freeing the array X, but caution must be observed so
that it is not freed twice.

Note that this method does not rely on the GxB_Container object. In-
stead, it unloads a dense GrB_Vector V directly into a C array X.

6.12.3 GxB Container new: create a container

GrB_Info GxB_Container_new (GxB_Container *Container) ;

GxB_Container_new creates a new container. It has the following defini-
tion (extra space for future expansion excluded for clarity):

struct GxB_Container_struct

{

uint64_t nrows, ncols ;

int64_t nrows_nonempty, ncols_nonempty ;

uint64_t nvals ;

int32_t format ; // GxB_HYPERSPARSE, GxB_SPARSE, GxB_BITMAP, or GxB_FULL

int32_t orientation ; // GrB_ROWMAJOR or GrB_COLMAJOR

GrB_Vector p, h, b, i, x ; // dense vector components

GrB_Matrix Y ;

bool iso, jumbled ;

} ;

typedef struct GxB_Container_struct *GxB_Container ;

The Container holds all of the data from a single GraphBLAS matrix or
vector, with any data type and any data format. It contains extra space for

129

future data formats (not shown above). Each scalar component is described
below:

� nrows: the number of rows of a matrix, or the size of a vector.

� ncols: the number of columns of a matrix, or 1 for a vector.

� nrows_nonempty: if known, this value must give the exact number of
non-empty rows of a matrix or vector (that is, the number of rows have
at least one entry). If not known, this value must be set to -1.

� ncols_nonempty: if known, this value must give the exact number
of non-empty columns of a matrix or vector (that is, the number of
columns have at least one entry). If not known, this value must be set
to -1.

� nvals: the number of entries in the matrix or vector.

� format: this defines the data format of a matrix or vector. Currently,
GraphBLAS supports four formats, described in Section 6.13, each with
two orientations. A GrB_Vector cannot be held in GxB_HYPERSPARSE

format.

� orientation: whether the matrix is held by row or by column. This is
always GrB_COLMAJOR for a container holding data for a GrB_Vector,
and for data holding an n-by-1 GrB_Matrix with a single column.

� iso: if true, all of the entries in the matrix have the same value, and
only a single value is stored in the x component of the Container.

� jumbled: if true, the indices in any given row (if in row-major orienta-
tion) or column (if column-major) may appear out of order. Otherwise,
they must appear in ascending order. A jumbled matrix or vector must
not have any read-only components.

The Container holds five dense GrB_Vector objects that hold the primary
data for the matrix or vector, and a single GrB_Matrix Y that holds an
optional optimization structure called the hyper-hash. These components
are fully described in Section 6.13.

130

6.12.4 GxB Container free: free a container

GrB_Info GrB_free (GxB_Container *Container) ;

GxB_Container_free frees a container. It also frees all its opaque com-
ponents. Any read-only array inside these opaque objects is not freed.

6.12.5 GxB load Matrix from Container: load a matrix from a container

GrB_Info GxB_load_Matrix_from_Container // GrB_Matrix <- GxB_Container

(

GrB_Matrix A, // matrix to load from the Container. On input,

// A is a matrix of any size or type; on output

// any prior size, type, or contents is freed

// and overwritten with the Container.

GxB_Container Container, // Container with contents to load into A

const GrB_Descriptor desc // currently unused

) ;

GxB_load_Matrix_from_Containermoves all of the data from a GxB_Container
into a GrB_Matrix in O(1) time.

The container vectors p, h, and i may be any signed or unsigned integer
type of size 32 or 64 bits. Any other types will result in an error.

6.12.6 GxB load Vector from Container: load a vector from a container

GrB_Info GxB_load_Vector_from_Container // GrB_Vector <- GxB_Container

(

GrB_Vector V, // GrB_Vector to load from the Container

GxB_Container Container, // Container with contents to load into V

const GrB_Descriptor desc // currently unused

) ;

GxB_load_Vector_from_Containermoves all of the data from a GxB_Container
into a GrB_Vector in O(1) time.

The container format may not be GxB_HYPERSPARSE. The container vec-
tors p and i may be any signed or unsigned integer type of size 32 or 64 bits.
Any other types will result in an error.

131

6.12.7 GxB unload Matrix into Container: unload a matrix into a con-
tainer

GrB_Info GxB_unload_Matrix_into_Container // GrB_Matrix -> GxB_Container

(

GrB_Matrix A, // matrix to unload into the Container

GxB_Container Container, // Container to hold the contents of A

const GrB_Descriptor desc // currently unused

) ;

GxB_unload_Matrix_into_Container: moves all of the data from a GrB_Matrix
into a GxB_Container in O(1) time.

The container vector p is unloaded as GrB_UINT32 or GrB_UINT64, while
h, and i are unloaded as GrB_INT32 or GrB_INT64.

6.12.8 GxB unload Vector into Container: unload a vector into a con-
tainer

GrB_Info GxB_unload_Vector_into_Container // GrB_Vector -> GxB_Container

(

GrB_Vector V, // vector to unload into the Container

GxB_Container Container, // Container to hold the contents of V

const GrB_Descriptor desc // currently unused

) ;

GxB_unload_Vector_into_Container: moves all of the data from a GrB_Vector
into a GxB_Container in O(1) time.

The container vector p is unloaded as GrB_UINT32 or GrB_UINT64, while
i is unloaded as GrB_INT32 or GrB_INT64.

6.12.9 Container example: unloading/loading an entire matrix
into C arrays

The following example unloads a GrB_Matrix A of size nrows-by-ncols,
with nvals entries, of type xtype. The example takes will take O(1) time,
and the only mallocs are in GxB_Container_new (which can be reused
for an arbitrary number of load/unload cycles), and the only frees are in
GxB_Container_free.

Note that getting C arrays from a GrB_Matrix is a 2-step process: First
unload the matrix A into a Container, giving GrB_Vector objects Container->p,
Container->i, Container->x, etc, and then unload those dense vectors into

132

C arrays. This may seem tedious but it allows everything to be done in O(1)
time and space (often no new malloc’d space), and it allows support for ar-
bitrary integers for the p, h, and i components of a matrix. It also makes
for a simple API overall.

GxB_Container_new (&Container) ; // requires several O(1)-sized mallocs

// no malloc/free will occur below, until GxB_Container_free.

for (as many times as you like)

{

GxB_unload_Matrix_into_Container (A, Container, desc) ;

// A is now 0-by-0 with nvals(A)=0. Its type is unchanged.

// All of the following is optional; if any item in the Container is not

// needed by the user, it can be left as-is, and then it will be put

// back into A at the end. (This is done for the Container->Y).

// to extract numerical values from the Container:

void *x = NULL ;

uint64_t nvals = 0, nheld = 0 ;

GrB_Type xtype = NULL ;

int x_handling, p_handling, h_handling, i_handling, b_handling ;

uint64_t x_size, p_size, h_size, i_size, b_size ;

GxB_Vector_unload (Container->x, &x, &xtype, &nheld, &x_size, &x_handling,

desc) ;

// The C array x now has size nheld and contains the values of the original

// GrB_Matrix A, with type xtype being the original type of the matrix A.

// The Container->x GrB_Vector still exists but it now has length 0.

// If the matrix A was iso-valued, nheld == 1.

// to extract the sparsity pattern from the Container:

GrB_Type ptype = NULL, htype = NULL, itype = NULL, btype = NULL ;

void *p = NULL, *h = NULL, *i = NULL, *b = NULL ;

uint64_t plen = 0, plen1 = 0, nheld = 0 ;

switch (Container->format)

{

case GxB_HYPERSPARSE :

// The Container->Y matrix can be unloaded here as well,

// if desired. Its use is optional.

GxB_Vector_unload (Container->h, &h, &htype, &plen, &h_size,

&h_handling, desc) ;

133

case GxB_SPARSE :

GxB_Vector_unload (Container->p, &p, &ptype, &plen1, &p_size,

&p_handling, desc) ;

GxB_Vector_unload (Container->i, &i, &itype, &nvals, &i_size,

&i_handling, desc) ;

break ;

case GxB_BITMAP :

GxB_Vector_unload (Container->b, &b, &btype, &nheld, &b_size,

&b_handling, desc) ;

break ;

}

// Now the C arrays (p, h, i, b, and x) are all populated and owned by the

// user application. They can be modified here, if desired. Their C type

// is (void *), and their actual types correspond to ptype, htype, itype,

// btype, and xtype).

// to load them back into A, first load them into the Container->[phbix]

// vectors:

switch (Container->format)

{

case GxB_HYPERSPARSE :

// The Container->Y matrix can be loaded here as well,

// if desired. Its use is optional.

GxB_Vector_load (Container->h, &h, htype, plen, h_size,

h_handling, desc) ;

case GxB_SPARSE :

GxB_Vector_load (Container->p, &p, ptype, plen1, p_size,

p_handling, desc) ;

GxB_Vector_load (Container->i, &i, itype, nvals, i_size,

i_handling, desc) ;

break ;

case GxB_BITMAP :

GxB_Vector_load (Container->b, &b, btype, nheld, b_size,

b_handling, desc) ;

break ;

}

GxB_Vector_load (Container->x, &x, xtype, nheld, x_size,

x_handling, desc) ;

// Now the C arrays p, h, i, b, and x are all NULL. They are in the

// Container->p,h,b,i,x GrB_Vectors. Load A from the non-opaque Container:

GxB_load_Matrix_from_Container (A, Container, desc) ;

// A is now back to its original state. The Container and its p,h,b,i,x

134

// GrB_Vectors exist but its vectors all have length 0.

}

GxB_Container_free (&Container) ; // does several O(1)-sized free’s

6.12.10 Container example: unloading/loading, but not using C
arrays

Using the container is very simple if the resulting Container GrB_Vector

components are used directly by GraphBLAS, with no need for C arrays.
For example, in a push/relabel maxflow algorithm, there is a need to extract
the tuples from a GrB_Vector Delta, followed by a call to GrB_Matrix_build
to create a matrix from that data. In GraphBLAS v9 and earlier, extracting
the tuples requires a copy. In v10, it can be done using the container, without
requiring a copy of the contents of Delta.

GxB_Container_new (&Container) ;

for (...)

{

GrB_Vector Delta, J_Vector ; // computed by GraphBLAS (not shown)

GrB_Matrix DeltaMatrix ;

...

GxB_unload_Vector_into_Container (Delta, Container, desc) ;

GxB_Matrix_build_Vector (DeltaMatrix, Container->i, J_vector,

Container->x, GrB_PLUS_FP32, NULL) ;

GxB_load_Vector_from_Container (Delta, Container, desc) ;

}

GxB_Container_free (&Container) ;

The contents of the Delta vector can be used unloaded in to the container
for use by GxB_Matrix_build_Vector, in O(1) time, and then loaded back
afterwards, also in O(1) time. The construction of the DeltaMatrix takes the
same time as GrB_Matrix_build, but the extra copy that would be required
for GrB_Vector_extractTuples is entirely avoided.

135

6.13 SuiteSparse:GraphBLAS data formats

SuiteSparse:GraphBLAS uses four distinct data formats: sparse, hypersparse,
bitmap, and full, each in row-major or column-major orientations, for eight
different variants (each of which are listed below). Each of these eight total
variants can be iso-valued, where if Container->iso is true the numerical
values are all the same, and Container->x holds a single entry with this
value. Each of the sparse and hypersparse formats can appear in jumbled
form, where the indices within any given row (if the orientation is row-major)
or column may be out of order. If Container->jumbled is false, then the
indices appear in ascending order.

The p, h, and i vectors in the Container have an integer type, either
GrB_UINT32 or GrB_UINT64. These appear below as just integer, but the
actual corresponding C type (uint32_t or uint64_t) must be used for each
component.

6.13.1 Sparse, held by row

A sparse matrix in CSR format, held by row, has a Container->format

value of GxB_SPARSE and a Container->orientation of GrB_ROWMAJOR. It
requires three arrays:

� integer Ap [nrows+1] ; The Ap array is the row “pointer” array. It
does not actual contain pointers, but integer offsets. More precisely,
it is an integer array that defines where the column indices and values
appear in Aj and Ax, for each row. The number of entries in row i is
given by the expression Ap [i+1] - Ap [i].

� integer Aj [nvals] ; The Aj array defines the column indices of
entries in each row.

� type Ax [nvals] ; The Ax array defines the values of entries in each
row.

The content of the three arrays Ap Aj, and Ax is very specific. This
content is not checked, since this function takes only O(1) time. Results are
undefined if the following specification is not followed exactly.

The column indices of entries in the ith row of the matrix are held in
Aj [Ap [i] ... Ap[i+1]], and the corresponding values are held in the

136

same positions in Ax. Column indices must be in the range 0 to ncols-1.
If jumbled is false, column indices must appear in ascending order within
each row. If jumbled is true, column indices may appear in any order within
each row. No duplicate column indices may appear in any row. Ap [0] must
equal zero, and Ap [nrows] must equal nvals. The Ap array must be of size
nrows+1 (or larger), and the Aj and Ax arrays must have size at least nvals.

An example of the CSR format is shown below. Consider the following
matrix with 10 nonzero entries, and suppose the zeros are not stored.

A =


4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0
3.5 0.4 0 1.0

 (1)

The Ap array has length 5, since the matrix is 4-by-4. The first entry
must always zero, and Ap [5] = 10 is the number of entries. The content
of the arrays is shown below:

integer Ap [] = { 0, 2, 5, 7, 10 } ;

integer Aj [] = { 0, 2, 0, 1, 3, 1, 2, 0, 1, 3 } ;

double Ax [] = { 4.5, 3.2, 3.1, 2.9, 0.9, 1.7, 3.0, 3.5, 0.4, 1.0 } ;

Spaces have been added to the Ap array, just for illustration. Row
zero is in Aj [0..1] (column indices) and Ax [0..1] (values), starting at
Ap [0] = 0 and ending at Ap [0+1]-1 = 1. The list of column indices of
row one is at Aj [2..4] and row two is in Aj [5..6]. The last row (three)
appears Aj [7..9], because Ap [3] = 7 and Ap [4]-1 = 10-1 = 9. The
corresponding numerical values appear in the same positions in Ax.

To iterate over the rows and entries of this matrix, the following code can
be used (assuming it has type GrB_FP64):

integer nvals = Ap [nrows] ;

for (integer i = 0 ; i < nrows ; i++)

{

// get A(i,:)

for (integer p = Ap [i] ; p < Ap [i+1] ; p++)

{

// get A(i,j)

integer j = Aj [p] ; // column index

double aij = Ax [iso ? 0 : p] ; // numerical value

}

}

137

In the container, the three arrays Ap, Aj and Ax are held in three GrB_Vector
objects: Container->p, Container->i, and Container->x, respectively.

6.13.2 Sparse, held by column

This format is the transpose of sparse-by-row. A sparse matrix in CSC
format, held by column, has a Container->format value of GxB_SPARSE and
a Container->orientation of GrB_COLMAJOR. It requires three arrays: Ap,
Ai, and Ax.

The column “pointer” array Ap has size ncols+1. The row indices of the
columns are in Ai, and if jumbled is false, they must appear in ascending
order in each column. The corresponding numerical values are held in Ax.
The row indices of column j are held in Ai [Ap [j]...Ap [j+1]-1], and
the corresponding numerical values are in the same locations in Ax.

The same matrix from Equation 1 in the last section (repeated here):

A =


4.5 0 3.2 0
3.1 2.9 0 0.9
0 1.7 3.0 0
3.5 0.4 0 1.0

 (2)

is held in CSC form as follows:

integer Ap [] = { 0, 3, 6, 8, 10 } ;

integer Ai [] = { 0, 1, 3, 1, 2, 3, 0, 2, 1, 3 } ;

double Ax [] = { 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9, 1.0 } ;

That is, the row indices of column 1 (the second column) are in Ai [3..5],
and the values in the same place in Ax, since Ap [1] = 3 and Ap [2]-1 = 5.

To iterate over the columns and entries of this matrix, the following code
can be used (assuming it has type GrB_FP64):

integer nvals = Ap [ncols] ;

for (integer j = 0 ; j < ncols ; j++)

{

// get A(:,j)

for (integer p = Ap [j] ; p < Ap [j+1] ; p++)

{

// get A(i,j)

integer i = Ai [p] ; // row index

double aij = Ax [iso ? 0 : p] ; // numerical value

}

}

138

In the container, the three arrays Ap, Ai and Ax are held in three GrB_Vector
objects: Container->p, Container->i, and Container->x, respectively.

6.13.3 Hypersparse, held by row

The hypersparse HyperCSR format is identical to the CSR format, except
that the Ap array itself becomes sparse, if the matrix has rows that are
completely empty. An array Ah of size nvec provides a list of rows that
appear in the data structure. For example, consider Equation 3, which is
a sparser version of the matrix in Equation 1. Row 2 and column 1 of this
matrix are all empty.

A =


4.5 0 3.2 0
3.1 0 0 0.9
0 0 0 0
3.5 0 0 1.0

 (3)

The conventional CSR format would appear as follows. Since the third
row (row 2) is all zero, accessing Ai [Ap [2] ... Ap [3]-1] gives an empty
set ([2..1]), and the number of entries in this row is Ap [i+1] - Ap [i]

= Ap [3] - Ap [2] = 0.

integer Ap [] = { 0, 2,2, 4, 5 } ;

integer Aj [] = { 0, 2, 0, 3, 0 3 }

double Ax [] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ;

A hypersparse CSR format for this same matrix would discard these du-
plicate integers in Ap. Doing so requires another array, Ah, that keeps track
of the rows that appear in the data structure.

integer nvec = 3 ;

integer Ah [] = { 0, 1, 3 } ;

integer Ap [] = { 0, 2, 4, 5 } ;

integer Aj [] = { 0, 2, 0, 3, 0 3 }

double Ax [] = { 4.5, 3.2, 3.1, 0.9, 3.5, 1.0 } ;

Note that the Aj and Ax arrays are the same in the CSR and HyperCSR
formats. If jumbled is false, the row indices in Ah must appear in ascending
order, and no duplicates can appear. To iterate over this data structure
(assuming it has type GrB_FP64):

139

integer nvals = Ap [nvec] ;

for (integer k = 0 ; k < nvec ; k++)

{

integer i = Ah [k] ; // row index

// get A(i,:)

for (integer p = Ap [k] ; p < Ap [k+1] ; p++)

{

// get A(i,j)

integer j = Aj [p] ; // column index

double aij = Ax [iso ? 0 : p] ; // numerical value

}

}

This is more complex than the CSR format, but it requires at most O(e)
space, where A is m-by-n with e = nvals entries. The CSR format requires
O(m + e) space. If e << m, then the size m + 1 of Ap can dominate the
memory required. In the hypersparse form, Ap takes on size nvec+1, and Ah

has size nvec, where nvec is the number of rows that appear in the data
structure. The CSR format can be viewed as a dense array (of size nrows)
of sparse row vectors. By contrast, the hypersparse CSR format is a sparse
array (of size nvec) of sparse row vectors.

In the container, the four arrays Ap, Ah, Aj and Ax are held in four
GrB_Vector objects: Container->p, Container->h, Container->i, and
Container->x, respectively.

In addition, the container may hold an optional optimization structure,
Container->Y, called the hyper-hash. This is a GrB_Matrix that holds the
inverse of the Container->h array (called Y because it looks like an upside-
down h). If a matrix is being loaded from raw data, the hyper-hash is not yet
constructed, so the Container->Y matrix should be set to NULL. GraphBLAS
will compute it when needed.

When a matrix is unload into a container, GraphBLAS will place the
hyper-hash matrix there if it has been computed. If the matrix is subse-
quently loaded from the container, and Container->h is unchanged, then
leaving the hyper-hash unmodified will preserve this optional optimization
data structure. If instead Container->h is revised, the hyper-hash in Container->Y
must be freed (or at least removed from the container) when the matrix is
loaded from the container..

A GrB_Vector is never held in hypersparse format.

140

6.13.4 Hypersparse, held by column

The hypersparse-by-column format is the transpose of the hypersparse-by-
row format. The Container->format is GxB_HYPERSPARSE and the
Container->orientation is GrB_COLMAJOR. In the container, the four ar-
rays Ap, Ah, Ai and Ax are held in four GrB_Vector objects: Container->p,
Container->h, Container->i, and Container->x, respectively. A GrB_Vector

is never held in hypersparse format.

6.13.5 Bitmap, held by row

The Container->format is GxB_BITMAP and the Container->orientation

is GrB_ROWMAJOR. This format requires two arrays, Ab and Ax, each of which
are size nrows*ncols. They correspond to Container->b and Container->x

in the GxB_Container object. These arrays define the pattern and values of
the matrix A:

� int8_t Ab [nrows*ncols] ; The Ab array defines which entries of A
are present. If Ab[i*ncols+j]=1, then the entry A(i, j) is present, with
value Ax[i*ncols+j]. If Ab[i*ncols+j]=0, then the entry A(i, j) is
not present. The Ab array must contain only 0s and 1s. The nvals

input must exactly match the number of 1s in the Ab array.

� type Ax [nrows*ncols] ; The Ax array defines the values of entries
in the matrix. If Ab[p] is zero, the value of Ax[p] is ignored. If the
matrix is iso-valued, Ax has size 1.

6.13.6 Bitmap, held by column

This is the transpose of the bitmap-by-row format. The Container->format
is GxB_BITMAP and the Container->orientation is GrB_COLMAJOR. The
value of the entry A(i, j) is held in Ax [i+j*nrows], or in Ax[0] if the
matrix is iso-valued. It is present if Ab [i+j*nrows] is 1, and not present if
zero.

6.13.7 Full, held by row

The Container->format is GxB_FULL and the Container->orientation is
GrB_ROWMAJOR. This format is held in a single GrB_Vector, Container->x.

141

The A(i, j) entry is in position i*ncols+j in this array, or in position 0 if
the matrix is iso-valued. All entries are present.

6.13.8 Full, held by column

This is the transpose of the full-by-row format. The Container->format is
GxB_FULL and the Container->orientation is GrB_COLMAJOR. This format
is held in a single GrB_Vector, Container->x. The A(i, j) entry is in position
i+j*nrows in this array, or in position 0 if the matrix is iso-valued. All entries
are present.

142

6.14 GraphBLAS import/export: using copy seman-
tics

The v2.0 C API includes import/export methods for matrices (not vectors)
using a different strategy as compared to the GxB_Container methods. The
GxB_Containermethods are based onmove semantics, in which ownership of
arrays is passed between SuiteSparse:GraphBLAS and the user application.
This allows the GxB_Containermethods to work in O(1) time, and require no
additional memory, but it requires that GraphBLAS and the user application
agree on which memory manager to use. This is done via GxB_init. This
allows GraphBLAS to malloc an array that can be later freed by the user
application, and visa versa.

The GrB import/export methods take a different approach. The data is
always copied in and out between the opaque GraphBLAS matrix and the
user arrays. This takes Ω(e) time, if the matrix has e entries, and requires
more memory. It has the advantage that it does not require GraphBLAS
and the user application to agree on what memory manager to use, since no
ownership of allocated arrays is changed.

The format for GrB_Matrix_import and GrB_Matrix_export is controlled
by the following enum:

typedef enum

{

GrB_CSR_FORMAT = 0, // CSR format (equiv to GxB_SPARSE with GrB_ROWMAJOR)

GrB_CSC_FORMAT = 1, // CSC format (equiv to GxB_SPARSE with GrB_COLMAJOR)

GrB_COO_FORMAT = 2 // triplet format (like input to GrB*build)

}

GrB_Format ;

143

6.14.1 GrB Matrix import: import a matrix

GrB_Info GrB_Matrix_import // import a matrix

(

GrB_Matrix *A, // handle of matrix to create

GrB_Type type, // type of matrix to create

GrB_Index nrows, // number of rows of the matrix

GrB_Index ncols, // number of columns of the matrix

const GrB_Index *Ap, // pointers for CSR, CSC, column indices for COO

const GrB_Index *Ai, // row indices for CSR, CSC

const <type> *Ax, // values

GrB_Index Ap_len, // number of entries in Ap (not # of bytes)

GrB_Index Ai_len, // number of entries in Ai (not # of bytes)

GrB_Index Ax_len, // number of entries in Ax (not # of bytes)

int format // import format (GrB_Format)

) ;

The GrB_Matrix_import method copies from user-provided arrays into
an opaque GrB_Matrix and GrB_Matrix_export copies data out, from an
opaque GrB_Matrix into user-provided arrays.

The suffix TYPE in the prototype above is one of BOOL, INT8, INT16, etc,
for built-n types, or UDT for user-defined types. The type of the Ax array
must match this type. No typecasting is performed.

Unlike the GxB_Container methods, memory is not handed off between
the user application and GraphBLAS. The three arrays Ap, Ai. and Ax are
not modified, and are still owned by the user application when the method
finishes.

GrB_Matrix_import does not support the creation of matrices with 32-bit
integer indices.

The matrix can be imported in one of three different formats:

� GrB_CSR_FORMAT: Compressed-row format. Ap is an array of size nrows+1.
The arrays Ai and Ax are of size nvals = Ap [nrows], and Ap[0]

must be zero. The column indices of entries in the ith row appear in
Ai[Ap[i]...Ap[i+1]-1], and the values of those entries appear in the
same locations in Ax. The column indices need not be in any particular
order. See Section 6.13.1 for details of the sparse-by-row (CSR) format.

� GrB_CSC_FORMAT: Compressed-column format. Ap is an array of size
ncols+1. The arrays Ai and Ax are of size nvals = Ap [ncols], and
Ap[0] must be zero. The row indices of entries in the jth column
appear in Ai[Ap[j]...Ap[j+1]-1], and the values of those entries

144

appear in the same locations in Ax. The row indices need not be in any
particular order. See Section 6.13.2 for details of the sparse-by-column
(CSC) format.

� GrB_COO_FORMAT: Coordinate format. This is the same format as the
I, J, X inputs to GrB_Matrix_build. The three arrays Ap, Ai, and
Ax have the same size. The kth tuple has row index Ai[k], column
index Ap[k], and value Ax[k]. The tuples can appear any order, but
no duplicates are permitted.

6.14.2 GrB Matrix export: export a matrix

GrB_Info GrB_Matrix_export // export a matrix

(

GrB_Index *Ap, // pointers for CSR, CSC, column indices for COO

GrB_Index *Ai, // col indices for CSR/COO, row indices for CSC

<type> *Ax, // values (must match the type of A_input)

GrB_Index *Ap_len, // number of entries in Ap (not # of bytes)

GrB_Index *Ai_len, // number of entries in Ai (not # of bytes)

GrB_Index *Ax_len, // number of entries in Ax (not # of bytes)

int format, // export format (GrB_Format)

GrB_Matrix A // matrix to export

) ;

GrB_Matrix_export copies the contents of a matrix into three user-
provided arrays, using any one of the three different formats described in
Section 6.14.1. The size of the arrays must be at least as large as the lengths
returned by GrB_Matrix_exportSize. The matrix A is not modified.

On input, the size of the three arrays Ap, Ai, and Ax is given by Ap_len,
Ai_len, and Ax_len, respectively. These values are in terms of the number
of entries in these arrays, not the number of bytes. On output, these three
value are adjusted to report the number of entries written to the three arrays.

The suffix TYPE in the prototype above is one of BOOL, INT8, INT16, etc,
for built-n types, or UDT for user-defined types. The type of the Ax array
must match this type. No typecasting is performed.

GrB_Matrix_export always exports the indices and offsets of the matrix
using 64-bit integer indices, even if they are held internally using 32-bit
integers.

145

6.14.3 GrB Matrix exportSize: determine size of export

GrB_Info GrB_Matrix_exportSize // determine sizes of user arrays for export

(

GrB_Index *Ap_len, // # of entries required for Ap (not # of bytes)

GrB_Index *Ai_len, // # of entries required for Ai (not # of bytes)

GrB_Index *Ax_len, // # of entries required for Ax (not # of bytes)

int format, // export format (GrB_Format)

GrB_Matrix A // matrix to export

) ;

Returns the required sizes of the arrays Ap, Ai, and Ax for exporting a
matrix using GrB_Matrix_export, using the same format.

6.14.4 GrB Matrix exportHint: determine best export format

GrB_Info GrB_Matrix_exportHint // suggest the best export format

(

int *format, // export format (GrB_Format)

GrB_Matrix A // matrix to export

) ;

This method suggests the most efficient format for the export of a given
matrix. For SuiteSparse:GraphBLAS, the hint depends on the current format
of the GrB_Matrix:

� GxB_SPARSE, GrB_ROWMAJOR: export as GrB_CSR_FORMAT

� GxB_SPARSE, GrB_COLMAJOR: export as GrB_CSC_FORMAT

� GxB_HYPERSPARSE: export as GrB_COO_FORMAT

� GxB_BITMAP, GrB_ROWMAJOR: export as GrB_CSR_FORMAT

� GxB_BITMAP, GrB_COLMAJOR: export as GrB_CSC_FORMAT

� GxB_FULL, GrB_ROWMAJOR: export as GrB_CSR_FORMAT

� GxB_FULL, GrB_COLMAJOR: export as GrB_CSC_FORMAT

146

6.15 Sorting methods

GxB_Matrix_sort provides a mechanism to sort all the rows or all the columns
of a matrix, and GxB_Vector_sort sorts all the entries in a vector.

6.15.1 GxB Vector sort: sort a vector

GrB_Info GxB_sort

(

// output:

GrB_Vector w, // vector of sorted values

GrB_Vector p, // vector containing the permutation

// input

GrB_BinaryOp op, // comparator op

GrB_Vector u, // vector to sort

const GrB_Descriptor desc

) ;

GxB_Vector_sort is identical to sorting the single column of an n-by-
1 matrix. Refer to Section 6.15.2 for details. The op cannot be a binary
operator created by GxB_BinaryOp_new_IndexOp.

6.15.2 GxB Matrix sort: sort the rows/columns of a matrix

GrB_Info GxB_sort

(

// output:

GrB_Matrix C, // matrix of sorted values

GrB_Matrix P, // matrix containing the permutations

// input

GrB_BinaryOp op, // comparator op

GrB_Matrix A, // matrix to sort

const GrB_Descriptor desc

) ;

GxB_Matrix_sort sorts all the rows or all the columns of a matrix. Each
row (or column) is sorted separately. The rows are sorted by default. To
sort the columns, use GrB_DESC_T0. A comparator operator is provided to
define the sorting order (ascending or descending). For example, to sort a
GrB_FP64 matrix in ascending order, use GrB_LT_FP64 as the op, and to sort
in descending order, use GrB_GT_FP64.

The op must have a return value of GrB_BOOL, and the types of its two
inputs must be the same. The entries in A are typecasted to the inputs of

147

the op, if necessary. Matrices with user-defined types can be sorted with a
user-defined comparator operator, whose two input types must match the
type of A, and whose output is GrB_BOOL.

The two matrix outputs are C and P. Any entries present on input in
C or P are discarded on output. The type of C must match the type of A
exactly. The dimensions of C, P, and A must also match exactly (even with
the GrB_DESC_T0 descriptor).

With the default sort (by row), suppose A(i,:) contains k entries. In
this case, C(i,0:k-1) contains the values of those entries in sorted order,
and P(i,0:k-1) contains their corresponding column indices in the matrix
A. If two values are the same, ties are broken according column index.

If the matrix is sorted by column, and A(:,j) contains k entries, then
C(0:k-1,j) contains the values of those entries in sorted order, and P(0:k-1,j)
contains their corresponding row indices in the matrix A. If two values are
the same, ties are broken according row index.

The outputs C and P are both optional; either one (but not both) may be
NULL, in which case that particular output matrix is not computed. The op

cannot be a binary operator created by GxB_BinaryOp_new_IndexOp.

148

6.16 GraphBLAS descriptors: GrB Descriptor

A GraphBLAS descriptor modifies the behavior of a GraphBLAS operation.
If the descriptor is GrB_NULL, defaults are used.

The access to these parameters and their values is governed by two enum

types, GrB_Desc_Field and GrB_Desc_Value:

typedef enum

{

GrB_OUTP = 0, // descriptor for output of a method

GrB_MASK = 1, // descriptor for the mask input of a method

GrB_INP0 = 2, // descriptor for the first input of a method

GrB_INP1 = 3, // descriptor for the second input of a method

GxB_AxB_METHOD = 1000, // descriptor for selecting C=A*B algorithm

GxB_SORT = 35 // control sort in GrB_mxm

GxB_COMPRESSION = 36, // select compression for serialize

GxB_ROWINDEX_LIST = 7062, // how GrB_Vector I is intrepretted

GxB_COLINDEX_LIST = 7063, // how GrB_Vector J is intrepretted

GxB_VALUE_LIST = 7064, // how GrB_Vector X is intrepretted

}

GrB_Desc_Field ;

typedef enum

{

// for all GrB_Descriptor fields:

GrB_DEFAULT = 0, // default behavior of the method

// for GrB_OUTP only:

GrB_REPLACE = 1, // clear the output before assigning new values to it

// for GrB_MASK only:

GrB_COMP = 2, // use the complement of the mask

GrB_STRUCTURE = 4, // use the structure of the mask

// for GrB_INP0 and GrB_INP1 only:

GrB_TRAN = 3, // use the transpose of the input

// for GxB_AxB_METHOD only:

GxB_AxB_GUSTAVSON = 1001, // gather-scatter saxpy method

GxB_AxB_DOT = 1003, // dot product

GxB_AxB_HASH = 1004, // hash-based saxpy method

GxB_AxB_SAXPY = 1005 // saxpy method (any kind)

// for GxB_ROWINDEX_LIST, GxB_COLINDEX_LIST, and GxB_VALUE_LIST:

// GxB_USE_VALUES = ((int) GrB_DEFAULT) // use the values of the vector

GxB_USE_INDICES = 7060, // use the indices of the vector

GxB_IS_STRIDE = 7061, // use the values, of size 3, for lo:hi:inc

}

GrB_Desc_Value ;

149

� GrB_OUTP is a parameter that modifies the output of a GraphBLAS op-
eration. In the default case, the output is not cleared, and Z = C⊙T
then C⟨M⟩ = Z are computed as-is, where T is the results of the par-
ticular GraphBLAS operation.

In the non-default case, Z = C⊙T is first computed, using the results
of T and the accumulator ⊙. After this is done, if the GrB_OUTP de-
scriptor field is set to GrB_REPLACE, then the output is cleared of its
entries. Next, the assignment C⟨M⟩ = Z is performed.

� GrB_MASK is a parameter that modifies the Mask, even if the mask is
not present.

If this parameter is set to its default value, and if the mask is not present
(Mask==NULL) then implicitly Mask(i,j)=1 for all i and j. If the mask
is present then Mask(i,j)=1 means that C(i,j) is to be modified by
the C⟨M⟩ = Z update. Otherwise, if Mask(i,j)=0, then C(i,j) is not
modified, even if Z(i,j) is an entry with a different value; that value
is simply discarded.

If the GrB_MASK parameter is set to GrB_COMP, then the use of the mask
is complemented. In this case, if the mask is not present (Mask==NULL)
then implicitly Mask(i,j)=0 for all i and j. This means that none of
C is modified and the entire computation of Z might as well have been
skipped. That is, a complemented empty mask means no modifications
are made to the output object at all, except perhaps to clear it in
accordance with the GrB_OUTP descriptor. With a complemented mask,
if the mask is present then Mask(i,j)=0 means that C(i,j) is to be
modified by the C⟨M⟩ = Z update. Otherwise, if Mask(i,j)=1, then
C(i,j) is not modified, even if Z(i,j) is an entry with a different
value; that value is simply discarded.

If the GrB_MASK parameter is set to GrB_STRUCTURE, then the values of
the mask are ignored, and just the pattern of the entries is used. Any
entry M(i,j) in the pattern is treated as if it were true.

The GrB_COMP and GrB_STRUCTURE settings can be combined, either by
setting the mask option twice (once with each value), or by setting the
mask option to GrB_COMP+GrB_STRUCTURE (the latter is an extension
to the specification).

150

Using a parameter to complement the Mask is very useful because con-
structing the actual complement of a very sparse mask is impossible
since it has too many entries. If the number of places in C that should
be modified is very small, then use a sparse mask without complement-
ing it. If the number of places in C that should be protected from
modification is very small, then use a sparse mask to indicate those
places, and use a descriptor GrB_MASK that complements the use of the
mask.

� GrB_INP0 and GrB_INP1 modify the use of the first and second input
matrices A and B of the GraphBLAS operation.

If the GrB_INP0 is set to GrB_TRAN, then A is transposed before using
it in the operation. Likewise, if GrB_INP1 is set to GrB_TRAN, then the
second input, typically called B, is transposed.

Vectors and scalars are never transposed via the descriptor. If a method’s
first parameter is a matrix and the second a vector or scalar, then
GrB_INP0 modifies the matrix parameter and GrB_INP1 is ignored. If
a method’s first parameter is a vector or scalar and the second a ma-
trix, then GrB_INP1 modifies the matrix parameter and GrB_INP0 is
ignored.

To clarify this in each function, the inputs are labeled as first input:

and second input: in the function signatures.

� GxB_AxB_METHOD suggests the method that should be used to compute
C=A*B. All the methods compute the same result, except they may
have different floating-point roundoff errors. This descriptor should be
considered as a hint; SuiteSparse:GraphBLAS is free to ignore it.

– GrB_DEFAULT means that a method is selected automatically.

– GxB_AxB_SAXPY: select any saxpy-based method: GxB_AxB_GUSTAVSON,
and/or GxB_AxB_HASH, or any mix of the two, in contrast to the
dot-product method.

– GxB_AxB_GUSTAVSON: an extended version of Gustavson’s method
[Gus78], which is a very good general-purpose method, but some-
times the workspace can be too large. Assuming all matrices are
stored by column, it computes C(:,j)=A*B(:,j) with a sequence
of saxpy operations (C(:,j)+=A(:,k)*B(k:,j) for each nonzero

151

B(k,j)). In the coarse Gustavson method, each internal thread
requires workspace of size m, to the number of rows of C, which
is not suitable if the matrices are extremely sparse or if there are
many threads. For the fine Gustavson method, threads can share
workspace and update it via atomic operations. If all matrices
are stored by row, then it computes C(i,:)=A(i,:)*B in a se-
quence of sparse saxpy operations, and using workspace of size n
per thread, or group of threads, corresponding to the number of
columns of C.

– GxB_AxB_HASH: a hash-based method, based on [NMAB18]. It
is very efficient for hypersparse matrices, matrix-vector-multiply,
and when |B| is small. SuiteSparse:GraphBLAS includes a coarse
hash method, in which each thread has its own hash workspace,
and a fine hash method, in which groups of threads share a single
hash workspace, as concurrent data structure, using atomics.

– GxB_AxB_DOT: computes C(i,j)=A(i,:)*B(j,:)’, for each entry
C(i,j). If the mask is present and not complemented, only en-
tries for which M(i,j)=1 are computed. This is a very specialized
method that works well only if the mask is present, very sparse,
and not complemented, when C is small, or when C is bitmap or
full. For example, it works very well when A and B are tall and
thin, and C<M>=A*B’ or C=A*B’ are computed. These expressions
assume all matrices are in CSR format. If in CSC format, then
the dot-product method used for A’*B. The method is impossibly
slow if C is large and the mask is not present, since it takes Ω(mn)
time if C is m-by-n in that case. It does not use any workspace at
all. Since it uses no workspace, it can work very well for extremely
sparse or hypersparse matrices, when the mask is present and not
complemented.

� GxB_SORT provides a hint to GrB_mxm, GrB_mxv, GrB_vxm, and GrB_reduce
(to vector). These methods can leave the output matrix or vector in a
jumbled state, where the final sort is left as pending work. This is typ-
ically fastest, since some algorithms can tolerate jumbled matrices on
input, and sometimes the sort can be skipped entirely. However, if the
matrix or vector will be immediately exported in unjumbled form, or
provided as input to a method that requires it to not be jumbled, then

152

sorting it during the matrix multiplication is faster. By default, these
methods leave the result in jumbled form (a lazy sort), if GxB_SORT
is set to zero (GrB_DEFAULT). A nonzero value will inform the matrix
multiplication to sort its result, instead.

� GxB_COMPRESSION selects the compression method for serialization. The
default is ZSTD (level 1). See Section 6.11 for other options.

The next sections describe the methods for a GrB_Descriptor:

GraphBLAS function purpose Section
GrB_Descriptor_new create a descriptor 6.16.1
GrB_Descriptor_wait wait for a descriptor 6.16.2
GrB_Descriptor_free free a descriptor 6.16.3
GrB_get get a parameter from a descriptor 10.14
GrB_set set a parameter in a descriptor 10.14

6.16.1 GrB Descriptor new: create a new descriptor

GrB_Info GrB_Descriptor_new // create a new descriptor

(

GrB_Descriptor *descriptor // handle of descriptor to create

) ;

GrB_Descriptor_new creates a new descriptor, with all fields set to their
defaults (output is not replaced, the mask is not complemented, the mask is
valued not structural, neither input matrix is transposed, the method used in
C=A*B is selected automatically, and GrB_mxm leaves the final sort as pending
work).

6.16.2 GrB Descriptor wait: wait for a descriptor

GrB_Info GrB_wait // wait for a descriptor

(

GrB_Descriptor descriptor, // descriptor to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating a user-defined descriptor, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
does nothing except to ensure that d is valid.

153

6.16.3 GrB Descriptor free: free a descriptor

GrB_Info GrB_free // free a descriptor

(

GrB_Descriptor *descriptor // handle of descriptor to free

) ;

GrB_Descriptor_free frees a descriptor. Either usage:

GrB_Descriptor_free (&descriptor) ;

GrB_free (&descriptor) ;

frees the descriptor and sets descriptor to NULL. It safely does nothing if
passed a NULL handle, or if descriptor == NULL on input.

6.16.4 Descriptor settings for GrB Vector parameters

Several methods GraphBLAS v10 accept GrB_Vector parameters for their
index lists I and J, which appear only as uint64_t * C arrays in the v2.1
C Specification. Likewise, several methods accept a GrB_Vector parameter
X, where the related method in the Specification accepts only a raw C array
of a given type.

By default, GrB_Vector inputs I, J, and X are interpretted as if their
values are first extracted with GrB_Vector_extractTuples, where the values
are extracted in order (with ascending indices), and their values are then
passed to the method. The actual method is much faster; GraphBLAS uses
the values directly.

This behavior can be revised via the descriptor for the method. Three
settings are available:

� GxB_ROWINDEX_LIST: how the GrB_Vector I is intrepretted.

� GxB_COLINDEX_LIST: how the GrB_Vector J is intrepretted.

� GxB_VALUE_LIST: how GrB_Vector X is intrepretted (for GrB_build

only).

These can be set to one of the following values:

� GrB_DEFAULT or GxB_USE_VALUES: use the values of the vector (default).

154

� GxB_USE_INDICES: use the indices of the vector. This acts as if the in-
dices are first extracted into a C array with GrB_Vector_extractTuples,
where the indices are extracted in ascending order, and then this C ar-
ray is then passed to the method. The actual method is much faster;
GraphBLAS uses the indices directly.

� GxB_IS_STRIDE: use the values, of size 3, for a strided range, or lo:inc:hi
in MATLAB notation. This usage is limited to the I and J vectors (ex-
cept this option may not be used for GrB_build). The vector must
have exactly three entries, lo, hi, and inc, in that order.

The GxB_IS_STRIDE option is fully described in Section 11. In that sec-
tion, there are many options available. Here, the GrB_Vector I or J must
have length exactly three. The first entry present is the start of the sequence
(lo), the second entry is the end of the sequence (hi) and the third entry
is the stride (inc). This corresponds to the GxB_STRIDE option when pass-
ing a uint64_t * array. To use a stride of one, simply set the third entry
to 1; this corresponds to the GxB_RANGE option when passing a uint64_t *

array. To use a negative stride, simply pass in the vector with a signed
data type (GrB_INT32 or GrB_INT64 as appropriate; this corresponds to the
GxB_BACKWARDS option desribed in Section 11). These three values appear in
this order to be consistent GxB_BEGIN (0), GxB_END (1), and GxB_INC (2).

When using the _Vector methods, the GrB_Vector objects I, J, and X

may be sparse. If the vectors are sparse, GrB_Vector_extractTuples returns
a dense list of indices or values, and this is how the I,J,X vectors may be
used in the new methods in GraphBLAS v10 with the _Vector suffix at then
end of their name.

To use the GrB_ALL option, specifying all the rows or columns of a matrix
or all indices of a vector, pass in the corresponding GrB_Vector I or J as a
NULL pointer.

155

6.16.5 GrB DESC *: built-in descriptors

Built-in descriptors are listed in the table below. A dash in the table indicates
the default. These descriptors may not be modified or freed. Attempts to
modify them result in an error (GrB_INVALID_VALUE); attempts to free them
are silently ignored.

Descriptor OUTP MASK MASK INP0 INP1

structural complement
GrB_NULL - - - - -
GrB_DESC_T1 - - - - GrB_TRAN

GrB_DESC_T0 - - - GrB_TRAN -
GrB_DESC_T0T1 - - - GrB_TRAN GrB_TRAN

GrB_DESC_C - - GrB_COMP - -
GrB_DESC_CT1 - - GrB_COMP - GrB_TRAN

GrB_DESC_CT0 - - GrB_COMP GrB_TRAN -
GrB_DESC_CT0T1 - - GrB_COMP GrB_TRAN GrB_TRAN

GrB_DESC_S - GrB_STRUCTURE - - -
GrB_DESC_ST1 - GrB_STRUCTURE - - GrB_TRAN

GrB_DESC_ST0 - GrB_STRUCTURE - GrB_TRAN -
GrB_DESC_ST0T1 - GrB_STRUCTURE - GrB_TRAN GrB_TRAN

GrB_DESC_SC - GrB_STRUCTURE GrB_COMP - -
GrB_DESC_SCT1 - GrB_STRUCTURE GrB_COMP - GrB_TRAN

GrB_DESC_SCT0 - GrB_STRUCTURE GrB_COMP GrB_TRAN -
GrB_DESC_SCT0T1 - GrB_STRUCTURE GrB_COMP GrB_TRAN GrB_TRAN

GrB_DESC_R GrB_REPLACE - - - -
GrB_DESC_RT1 GrB_REPLACE - - - GrB_TRAN

GrB_DESC_RT0 GrB_REPLACE - - GrB_TRAN -
GrB_DESC_RT0T1 GrB_REPLACE - - GrB_TRAN GrB_TRAN

GrB_DESC_RC GrB_REPLACE - GrB_COMP - -
GrB_DESC_RCT1 GrB_REPLACE - GrB_COMP - GrB_TRAN

GrB_DESC_RCT0 GrB_REPLACE - GrB_COMP GrB_TRAN -
GrB_DESC_RCT0T1 GrB_REPLACE - GrB_COMP GrB_TRAN GrB_TRAN

GrB_DESC_RS GrB_REPLACE GrB_STRUCTURE - - -
GrB_DESC_RST1 GrB_REPLACE GrB_STRUCTURE - - GrB_TRAN

GrB_DESC_RST0 GrB_REPLACE GrB_STRUCTURE - GrB_TRAN -
GrB_DESC_RST0T1 GrB_REPLACE GrB_STRUCTURE - GrB_TRAN GrB_TRAN

GrB_DESC_RSC GrB_REPLACE GrB_STRUCTURE GrB_COMP - -
GrB_DESC_RSCT1 GrB_REPLACE GrB_STRUCTURE GrB_COMP - GrB_TRAN

GrB_DESC_RSCT0 GrB_REPLACE GrB_STRUCTURE GrB_COMP GrB_TRAN -
GrB_DESC_RSCT0T1 GrB_REPLACE GrB_STRUCTURE GrB_COMP GrB_TRAN GrB_TRAN

156

6.17 GrB free: free any GraphBLAS object

Each of the ten objects has GrB_*_new and GrB_*_free methods that are
specific to each object. They can also be accessed by a generic function,
GrB_free, that works for all ten objects. If G is any of the ten objects, the
statement

GrB_free (&G) ;

frees the object and sets the variable G to NULL. It is safe to pass in a NULL

handle, or to free an object twice:

GrB_free (NULL) ; // SuiteSparse:GraphBLAS safely does nothing

GrB_free (&G) ; // the object G is freed and G set to NULL

GrB_free (&G) ; // SuiteSparse:GraphBLAS safely does nothing

However, the following sequence of operations is not safe. The first two are
valid but the last statement will lead to undefined behavior.

H = G ; // valid; creates a 2nd handle of the same object

GrB_free (&G) ; // valid; G is freed and set to NULL; H now undefined

GrB_some_method (H) ; // not valid; H is undefined

Some objects are predefined, such as the built-in types. If a user applica-
tion attempts to free a built-in object, SuiteSparse:GraphBLAS will safely do
nothing. The GrB_free function in SuiteSparse:GraphBLAS always returns
GrB_SUCCESS.

157

7 The mask, accumulator, and replace option

After a GraphBLAS operation computes a result T, (for example, T = AB
for GrB_mxm), the results are assigned to an output matrix C via the mask/
accumulator phase, written as C⟨M⟩ = C⊙T. This phase is affected by
the GrB_REPLACE option in the descriptor, the presence of an optional binary
accumulator operator (⊙), the presence of the optional mask matrix M,
and the status of the mask descriptor. The interplay of these options is
summarized in Table 1.

The mask M may be present, or not. It may be structural or valued,
and it may be complemented, or not. These options may be combined, for a
total of 8 cases, although the structural/valued option as no effect if M is not
present. If M is not present and not complemented, then mij is implicitly
true. If not present yet complemented, then all mij entries are implicitly
zero; in this case, T need not be computed at all. Either C is not modified,
or all its entries are cleared if the replace option is enabled. If M is present,
and the structural option is used, then mij is treated as true if it is an entry
in the matrix (its value is ignored). Otherwise, the value of mij is used. In
both cases, entries not present are implicitly zero. These values are negated
if the mask is complemented. All of these various cases are combined to give
a single effective value of the mask at position ij.

The combination of all these options are presented in the Table 1. The
first column is the GrB_REPLACE option. The second column lists whether or
not the accumulator operator is present. The third column lists whether or
not cij exists on input to the mask/accumulator phase (a dash means that
it does not exist). The fourth column lists whether or not the entry tij is
present in the result matrix T. The mask column is the final effective value
of mij, after accounting for the presence of M and the mask options. Finally,
the last column states the result of the mask/accum step; if no action is listed
in this column, then cij is not modified.

Several important observations can be made from this table. First, if no
mask is present (and the mask-complement descriptor option is not used),
then only the first half of the table is used. In this case, the GrB_REPLACE

option has no effect. The entire matrix C is modified.
Consider the cases when cij is present but tij is not, and there is no

mask or the effective value of the mask is true for this ij position. With no
accumulator operator, cij is deleted. If the accumulator operator is present
and the replace option is not used, cij remains unchanged.

158

repl accum C T mask action taken by C⟨M⟩ = C⊙T

- - cij tij 1 cij = tij , update
- - - tij 1 cij = tij , insert
- - cij - 1 delete cij because tij not present
- - - - 1
- - cij tij 0
- - - tij 0
- - cij - 0
- - - - 0

yes - cij tij 1 cij = tij , update
yes - - tij 1 cij = tij , insert
yes - cij - 1 delete cij because tij not present
yes - - - 1
yes - cij tij 0 delete cij (because of GrB_REPLACE)
yes - - tij 0
yes - cij - 0 delete cij (because of GrB_REPLACE)
yes - - - 0

- yes cij tij 1 cij = cij ⊙ tij , apply accumulator
- yes - tij 1 cij = tij , insert
- yes cij - 1
- yes - - 1
- yes cij tij 0
- yes - tij 0
- yes cij - 0
- yes - - 0

yes yes cij tij 1 cij = cij ⊙ tij , apply accumulator
yes yes - tij 1 cij = tij , insert
yes yes cij - 1
yes yes - - 1
yes yes cij tij 0 delete cij (because of GrB_REPLACE)
yes yes - tij 0
yes yes cij - 0 delete cij (because of GrB_REPLACE)
yes yes - - 0

Table 1: Results of the mask/accumulator phase.

159

When there is no mask and the mask GrB_COMP option is not selected, the
table simplifies (Table 2). The GrB_REPLACE option no longer has any effect.
The GrB_SECOND_T binary operator when used as the accumulator unifies
the first cases, shown in Table 3. The only difference now is the behavior
when cij is present but tij is not. Finally, the effect of GrB_FIRST_T as the
accumulator is shown in Table 4.

accum C T action taken by C = C⊙T

- cij tij cij = tij , update
- - tij cij = tij , insert
- cij - delete cij because tij not present
- - -

yes cij tij cij = cij ⊙ tij , apply accumulator
yes - tij cij = tij , insert
yes cij -
yes - -

Table 2: When no mask is present (and not complemented).

accum C T action taken by C = C⊙T

yes cij tij cij = tij , apply GrB_SECOND accumulator
yes - tij cij = tij , insert
yes cij -
yes - -

Table 3: No mask, with the SECOND operator as the accumulator.

accum C T action taken by C = C⊙T

yes cij tij
yes - tij cij = tij , insert
yes cij -
yes - -

Table 4: No Mask, with the FIRST operator as the accumulator.

160

8 GxB Context: controlling computational re-

sources

SuiteSparse:GraphBLAS v8.0.0 adds a new object, the GxB_Context, which
controls the number of threads used by OpenMP. In the future, this same
object will control the number of GPUs used.

The GxB_Context object is not needed if the user application is itself
single threaded, with all parallelism is inside GraphBLAS itself. The object is
also not needed if the user application is multi-threaded, but all user threads
create the same number of threads inside GraphBLAS (say each using a single
thread). In that case, GrB_set(GrB_GLOBAL,1,GxB_NTHREADS) can be used
(for example).

However, suppose the user application creates 5 threads of its own, on
a machine with 16 cores, and each thread wants to use a different number
of threads inside GraphBLAS (one user thread uses 8 OpenMP threads and
the the other four use 2 each, for example). This is where the GxB_Context
object becomes essential.

The default context is GxB_CONTEXT_WORLD, which is not created by the
user application but it can be modified. If a user thread does not create
its own context, then its computational resources are determine by this
GxB_CONTEXT_WORLD object. The following GrB_set/get methods access this
global object without naming it directly (where chunk is a GrB_Scalar of
type GrB_FP64 or GrB_FP32):

� GrB_set (GrB_GLOBAL, nthreads, GxB_NTHREADS)

� GrB_get (GrB_GLOBAL, &nthreads, GxB_NTHREADS)

� GrB_set (GrB_GLOBAL, chunk, GxB_CHUNK)

� GrB_get (GrB_GLOBAL, chunk, GxB_CHUNK)

The above methods control the OpenMP threads used by all user threads
in the user application. To allow each user thread to control its own OpenMP
threading, each user thread needs to create its own Context object via
GxB_Context_new. Next, the user thread must engage this context via
GxB_Context_engage; all subsequent calls to GraphBLAS from this par-
ticular user thread will then use the number of OpenMP threads dictated by
this particular context.

161

Engaging a GxB_Context object assigns to a threadprivate space acces-
sible only by this particular user thread, so that any calls to GraphBLAS
can access the settings in this object.

The opposite operation is to disengage a context. This removes a partic-
ular object from the threadprivate space of the user thread that is disen-
gaging its context.

After a context object is created, the user thread that owns it can modify
its settings in this object. An example appears in the GraphBLAS/Demo folder,
part of which is listed below.

#pragma omp parallel for num_threads (nouter) schedule (dynamic, 1)

for (int k = 0 ; k < nmat ; k++)

{

// each user thread constructs its own context

GxB_Context Context = NULL ;

GxB_Context_new (&Context) ;

GrB_set (Context, ninner, GxB_NTHREADS) ;

GxB_Context_engage (Context) ;

// kth user thread builds kth matrix with ninner threads

GrB_Matrix A = NULL ;

GrB_Matrix_new (&A, GrB_FP64, n, n) ;

GrB_Matrix_build (A, I, J, X, nvals, GrB_PLUS_FP64) ;

// free the matrix just built

GrB_Matrix_free (&A) ;

// each user thread frees its own context

GxB_Context_disengage (Context) ;

GxB_Context_free (&Context) ;

}

In this example, nouter user threads are created. Inside the parallel
loop, each user thread creates and engages its own context object. In this
simple example, each user thread then uses ninner threads to do some work,
although in principle each user thread to request a different number of threads
for each of its calls to GraphBLAS. This leads to nested parallelism, so to
use this context object effectively, the nested parallelism feature of OpenMP
must be enabled.

The next sections describe the methods for a GxB_Context:

162

GraphBLAS function purpose Section
GxB_Context_new create a context 8.1
GxB_Context_engage engage a context 8.2
GxB_Context_disengage disengage a context 8.3
GxB_Context_free free a context 8.4
GxB_Context_wait wait for a context 8.5

GrB_get get a value from a context 10.15
GrB_set set a value in a context 10.15

GxB_Context_fprint check/print a context 13.11

8.1 GxB Context new: create a new context

GrB_Info GxB_Context_new // create a new context

(

GxB_Context *Context // handle of context to create

) ;

A new context is created and initialized with the current global settings
for GxB_NTHREADS and GxB_CHUNK. See GrB_get. The context object will not
have an effect on any calls to GraphBLAS until it is engaged by a user thread.

8.2 GxB Context engage: engaging context

GrB_Info GxB_Context_engage // engage a Context

(

GxB_Context Context // Context to engage

) ;

GxB_Context_engage sets the provided Context object as the Context for
this user thread. Multiple user threads can share a single Context. Any prior
Context for this user thread is superseded by the new Context (the prior one
is not freed). GrB_SUCCESS is returned, and future calls to GraphBLAS by
this user thread will use the provided Context.

If the Context on input is the GxB_CONTEXT_WORLD object, then the cur-
rent Context is disengaged. That is, the following calls have the same effect,
setting the Context of this user thread to GxB_CONTEXT_WORLD:

GxB_Context_engage (GxB_CONTEXT_WORLD) ;

GxB_Context_disengage (NULL) ;

The result for both cases above is GrB_SUCCESS.

163

Error cases: If Context is NULL on input, GrB_NULL_POINTER is re-
turned. If a non-NULL Context is provided but it is faulty in some way, then
an error code is returned (GrB_INVALID_OBJECT or GrB_UNINITIALIZED_OBJECT).
If an error code is returned, the current Context for this user thread is un-
modified.

8.3 GxB Context disengage: disengaging context

GrB_Info GxB_Context_disengage // disengage a Context

(

GxB_Context Context // Context to disengage

) ;

If a NULL Context is provided or if the Context input parameter is
GxB_CONTEXT_WORLD, then any current Context for this user thread is dis-
engaged. If a valid non-NULL Context is provided and it matches the cur-
rent Context for this user thread, it is disengaged. In all of these cases,
GrB_SUCCESS is returned. The user thread has no Context object and any
subsequent calls to GraphBLAS functions will use the world Context, GxB_CONTEXT_WORLD.

Error cases: If a non-NULL Context is provided but it is faulty in some
way, then an error code is returned (GrB_INVALID_OBJECT or GrB_UNINITIALIZED_OBJECT).
If a non-NULL Context is provided on input that doesn’t match the current
Context for this thread, then GrB_INVALID_VALUE is returned. If an error
code is returned, the current Context for this user thread is unmodified.

8.4 GxB Context free: free a context

GrB_Info GrB_free // free a context

(

GxB_Context *Context // handle of Context to free

) ;

GxB_Context_free frees a descriptor. Either usage:

GxB_Context_free (&Context) ;

GrB_free (&Context) ;

frees the Context and sets Context to NULL. It safely does nothing if passed
a NULL handle, or if Context == NULL on input.

164

8.5 GxB Context wait: wait for a context

GrB_Info GrB_wait // wait for a context

(

GxB_Context Context, // context to wait for

int mode // GrB_COMPLETE or GrB_MATERIALIZE

) ;

After creating or modifying a context, a GraphBLAS library may choose
to exploit non-blocking mode to delay its creation. Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that Context is valid.

165

9 The SuiteSparse:GraphBLAS JIT

SuiteSparse:GraphBLAS v8.0 adds a new JIT feature that greatly improves
performance of user-defined types and operators, and improves the perfor-
mance of built-in operators as well. The JIT can compile kernels that are
specific to the matrix type and the operators that work on it. In version
v7.4.4 and prior versions, user-defined types and operators were handled by
generic kernels that used function pointers for each operator and for any type-
casting required. Even built-in types and operators were sometimes handled
by the generic kernels, if any typecasting was done, or if the specific operator,
monoid, or semiring was disabled when GraphBLAS was compiled.

9.1 Using the JIT

Using the JIT in a user application is simple: by default, there is nothing
to do. LAGraph can use the JIT (and PreJIT) kernels without changing a
single line of code, for example.

Currently, the JIT compiles kernels for the CPU only, but a CUDA JIT
is in progress to exploit NVIDIA GPUs, in collaboration with Joe Eaton and
Corey Nolet, with NVIDIA.

When GraphBLAS is compiled, the cmake build system creates a cache
folder where it will keep any kernels created and compiled by the JIT (both
source code and compiled libraries for each kernel). The default folder
is ~/.SuiteSparse/GrB8.0.0 for SuiteSparse:GraphBLAS version v8.0.0,
where the tilde refers to the user’s home directory. The version numbers in
the folder name are set automatically, so that a new version will ignore kernels
compiled by an older version of GraphBLAS. If the GRAPHBLAS_CACHE_PATH
environment variable is set when GraphBLAS is compiled, that variable de-
fines the folder. If the user’s home directory cannot be determined and the
GRAPHBLAS_CACHE_PATH environment variable is not set, then JIT compila-
tion is disabled and only PreJIT kernels can be used. The optional envi-
ronment variable, GRAPHBLAS_CACHE_PATH, is also read by GrB_init when
the user application runs. See Section 9.1.11 for a description of the valid
characters that can appear in the cache path.

The user application can modify the location of the cache folder after
calling GrB_init. It can also modify the C compiler and its flags, and can
control when and how the JIT is used. These changes are made via GrB_set,
and can be queried via GrB_get; refer to Section 10 for details, and the

166

GxB_JIT_* settings:

field value description
GxB_JIT_C_COMPILER_NAME char * C compiler for JIT kernels
GxB_JIT_C_COMPILER_FLAGS char * flags for the C compiler
GxB_JIT_C_LINKER_FLAGS char * link flags for the C compiler
GxB_JIT_C_LIBRARIES char * libraries to link against (no cmake)
GxB_JIT_C_CMAKE_LIBS char * libraries to link against (with cmake)
GxB_JIT_C_PREFACE char * C code as preface to JIT kernels
GxB_JIT_C_CONTROL see below CPU JIT control
GxB_JIT_USE_CMAKE see below CPU JIT control
GxB_JIT_ERROR_LOG char * error log file
GxB_JIT_CACHE_PATH char * folder with compiled kernels

To control the JIT in the MATLAB @GrB interface, use the GrB.jit

method. Refer to help GrB.jit for details.
Kernels compiled during one run of a user application are kept in the

cache folder, so that when the user application runs again, the kernels do
not have to be compiled. If the kernel relies on user-defined types and/or
operators, a check is made the first time the compiled kernel is loaded. If
the current definition of the user-defined type or operator does not exactly
match the definition when the kernel was compiled, then the compiled kernel
is discarded and recompiled. The stale kernel is overwritten with the new
one, so there is no need to for the user to take any action to delete the
stale kernel from the cache path. If the cache path is changed via GrB_set,
compiled kernels in the old cache folder are not copied over. New ones are
compiled instead.

9.1.1 GxB JIT C CONTROL

The usage of the CPU JIT can be controlled via GrB_get/set using the
GxB_JIT_C_CONTROL setting. If the JIT is enabled at compile time, the ini-
tial setting is GxB_JIT_ON. If the JIT is disabled at compile time (by set-
ting the cmake variable GRAPHBLAS_USE_JIT to OFF), the initial setting is
GxB_JIT_RUN, so that any PreJIT kernels can be run. This setting can be
modified; for example to disable the JIT and clear all loaded JIT kernels
from memory, use:

GrB_set (GrB_GLOBAL, GxB_JIT_OFF, GxB_JIT_C_CONTROL) ;

The above call to GrB_set does not clear any PreJIT kernels, however,

167

since those are integral components of the single compiled GraphBLAS li-
brary and cannot be cleared (see Section 9.3). It also does not clear any
compiled user functions, created by the JIT for GxB_*Op_new when the input
function pointer is NULL.

The following settings are available for GxB_JIT_C_CONTROL. For examples
on how to use it, see GraphBLAS/Demo/Program/gauss_demo.c.

typedef enum

{

GxB_JIT_OFF = 0, // do not use the JIT: free all JIT kernels if loaded

GxB_JIT_PAUSE = 1, // do not run JIT kernels but keep any loaded

GxB_JIT_RUN = 2, // run JIT kernels if already loaded; no load/compile

GxB_JIT_LOAD = 3, // able to load and run JIT kernels; may not compile

GxB_JIT_ON = 4, // full JIT: able to compile, load, and run

}

GxB_JIT_Control ;

If the JIT is disabled at compile time via setting the GRAPHBLAS_USE_JIT
option OFF, PreJIT kernels are still available, and can be controlled via the
GxB_JIT_OFF, GxB_JIT_PAUSE, or GxB_JIT_RUN settings listed above. If the
application tries to set the control to GxB_JIT_LOAD or GxB_JIT_ON, the
setting is changed to GxB_JIT_RUN instead. This is not an error condition.
The resulting setting can be queried via GrB_get, if desired.

If your copy of GraphBLAS has many PreJIT kernels compiled into it, or
uses many run-time JIT kernels, turning of the JIT with GxB_JIT_OFF can
be costly. This setting clears the entire JIT hash table. Renabling the JIT
and using it will require the JIT table to be repopulated, including a check
of each PreJIT kernel the first time they are used. If you wish to temporarily
disable the JIT, consider switching the JIT control to GxB_JIT_PAUSE and
then back to GxB_JIT_RUN to reenable the JIT.

9.1.2 JIT error handling

The JIT control setting can be changed by GraphBLAS itself, based on
following error conditions. These changes affect all kernels, not just the kernel
causing the error. If any of these cases occur, the call to GraphBLAS returns
GxB_JIT_ERROR, unless GraphBLAS runs out of memory, in which case it
returns GrB_OUT_OF_MEMORY instead. If the JIT is disabled through any of
these errors, it can be detected by GrB_get to read the GxB_JIT_C_CONTROL
state.

168

� When a kernel is loaded that relies on user-defined types and/or op-
erators, the definitions in the previously compiled kernel are checked
against the current definitions. If they do not match, the old one is
discarded, and a new kernel will be compiled. However, if the control
is set to GxB_JIT_LOAD, no new kernels may be compiled. To avoid a
continual reloading and checking of stale kernels, the control is changed
from GxB_JIT_LOAD to GxB_JIT_RUN. To solve this problem, delete the
compiled kernel with the stale definition, or enable the full JIT by set-
ting the control to GxB_JIT_ON so that the kernel can recompiled with
the current definitions.

� If a new kernel is to be compiled with the control set to GxB_JIT_ON

but the source file cannot be created in the cache folder, or a compiler
error occurs, further compilation is disabled. The control is changed
from GxB_JIT_ON to GxB_JIT_LOAD. To solve this problem, make sure
your application has write permission to the cache path and that any
user-defined types and operators are defined properly so that no syntax
error is detected by the compiler.

� If a kernel is loaded but the lookup of the kernel function itself in
the compiled library fails, the control is changed to GxB_JIT_RUN to
prevent this error from occuring again. To solve this problem, delete the
corrupted compiled kernel from the cache folder. This case is unlikely
to occur since no user action can trigger it. It could indicate a system
problem with loading the kernel, or some kind of compiler error that
allows the kernel to be compiled but not loaded.

� If an out-of-memory condition occurs in the JIT, the JIT control is set
to GxB_JIT_PAUSE. This condition is not likely since the JIT does not
use a lot of memory.

As a result of this automatic change in the JIT control setting, after
the first JIT error is returned, subsequent calls to GraphBLAS will likely
succeed. GraphBLAS will use a generic kernel instead. To re-enable the
JIT for subsequent calls to GraphBLAS, the user application must reset the
GxB_JIT_C_CONTROL back to GxB_JIT_ON.

In many use cases of GraphBLAS (such as LAGraph), a function will
create a type or operator, use it, and then free it just before returning. It
would be far too costly to clear the loaded kernel and reload it each time the

169

LAGraph function is called, so any kernels that use this type or operator are
kept loaded when the type or operator is freed. The typical case is that when
the LAGraph function is called again, it will recreate the type or operator
with the identical name and definition. The kernels that use these types or
operators will still be loaded and can thus be used with no overhead.

However, if a user-defined type or operator is freed and then redefined
with the same name but a different definition, any loaded kernels should be
freed. This case is not detected by GraphBLAS since it would be far too
costly to check each time a previously loaded kernel is called. As a result,
this condition is only checked when the kernel is first loaded. To avoid
this issue, if the user application frees a user-defined type or operator and
creates a new one with a different definition but with the same name, clear
all prior kernels by setting the control to GxB_JIT_OFF. Then turn the JIT
back on with GxB_JIT_ON. This clears all run-time JIT kernels so that they
will be checked when reloaded, and recompiled if their definitions changed.
All PreJIT kernels are flagged as unchecked, just as they were flagged by
GrB_init, so that they will be checked the next time they run.

9.1.3 GxB JIT C COMPILER NAME

The GxB_JIT_C_COMPILER_NAME string is the name of the C compiler to use,
or its full path. By default it is set to the C compiler used to compile
GraphBLAS itself.

9.1.4 GxB JIT C COMPILER FLAGS

The GxB_JIT_C_COMPILER_FLAGS string is the C compiler flags. By default
it is set to the C compiler flags used to compile GraphBLAS itself.

9.1.5 GxB JIT C LINKER FLAGS

The GxB_JIT_C_LINKER_FLAGS string only affects the kernel compilation
when cmake is not used to compile the kernels (see Section 9.1.9). By default
it is set to the C link flags used to compile GraphBLAS itself. If cmake is
used to compile the kernels, then it determines the linker flags itself, and this
cannot be modified.

170

9.1.6 GxB JIT C LIBRARIES

The GxB_JIT_C_LIBRARIES string is used to set the libraries to link against
when cmake is not being used to compile the kernels (see Section 9.1.9). For
example, on Linux it is set by default to the -lm, -ld, and OpenMP libraries
used to link GraphBLAS itself. Any standalone library name is prepended
with -l. If cmake is used to compile the kernels, this string is ignored.

9.1.7 GxB JIT C CMAKE LIBS

The GxB_JIT_C_LIBRARIES string is used to set the libraries to link against
when cmake is being used to compile the kernels (see Section 9.1.9). For
example, on Linux it is set by default to the m, dl, and OpenMP libraries
used to link GraphBLAS itself. Libraries in the string should normally be
separated by semicolons. If cmake is not used to compile the kernels, this
string is ignored.

9.1.8 GxB JIT C PREFACE

The GxB_JIT_C_PREFACE string is added at the top of each JIT kernel. It
is useful for providing additional #include files that GraphBLAS does not
provide. It can also be useful for diagnostics and for configuring the PreJIT.
For example, suppose you wish to tag specific kernels as having been con-
structed for particular parts of an application. The application can modify
this string to some unique comment, and then run some benchmarks that
call GraphBLAS. Any JIT kernels created will be tagged with this unique
comment, which may be helpful to select specific kernels to copy into the
PreJIT folder.

9.1.9 GxB JIT USE CMAKE

Two methods are provided for compiling the JIT kernels: cmake, and a
direct compiler/link command. On Windows, only cmake may be used, and
this setting is ignored (it is always true). On Linux or Mac, the default is
false since a direct compile/link is faster. However, it is possible that some
compilers are not handled properly with this method, so cmake can also be
used on those platforms by setting the value of GxB_JIT_USE_CMAKE to true.

Normally the same version of cmake should be used to compile both
GraphBLAS and the JIT kernels. However, compiling GraphBLAS itself

171

requires cmake v3.16 or later (v3.19 for some options), while compiling the
JIT kernels only requires cmake v3.13 or later.

9.1.10 GxB JIT ERROR LOG

The GxB_JIT_ERROR_LOG string is the filename of the optional error log file.
By default, this string is empty, which means that any compiler errors are
routed to the stderr output of the user process. If set to a non-empty string,
any compiler errors are appended to this file. The string may be NULL, which
means the same as an empty string.

9.1.11 GxB JIT CACHE PATH

The GxB_JIT_CACHE_PATH string is the full path to the user’s cache folder
(described above). The default on Linux/Mac is ~/.SuiteSparse/GrB8.0.0
for GraphBLAS version 8.0.0. On Windows, the cache folder is created in-
side the user’s LOCALAPPDATA folder, called SuiteSparse/GrB8.0.0. When
GraphBLAS starts, GrB_init checks if the GRAPHBLAS_CACHE_PATH environ-
ment variable exists, and initializes the cache path with that value instead
of using the default.

Restrictions: the cache path is sanitized for security reasons. No spaces
are permitted. Backslashes are converted into forward slashes. It can contain
only charactors in the following list:

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789.-_/

In addition, the second character in the string is allowed to be the colon
character (:) to allow for the use of Windows drive letters. Any character
outside of these rules is converted into an underscore (_).

If your run multiple user applications that each use the same version of
GraphBLAS, then each of your applications must set their own unique JIT
cache path. Only one user application at a time may use the default JIT
cache path. Prior versions of SuiteSparse:GraphBLAS used file locking to
try to allow the sharing of the JIT cache, but this came with performance
issues, and limits the cache folder to file systems that support file locking.
Those constraints are now removed in this version of GraphBLAS. Instead,
it is now the responsibility of the user application to ensure each one uses
their own cache, if the user runs multiple applications simultaneously.

172

9.2 Compilation options: GRAPHBLAS USE JIT and GRAPH-
BLAS COMPACT

The CPU JIT can be disabled at compile time by setting the GRAPHBLAS_USE_JIT
option OFF in the cmake build options. Good performance will be obtained
only by using the FactoryKernels or the PreJIT kernels that are com-
piled into GraphBLAS when it is first compiled with cmake. By default,
GRAPHBLAS_USE_JIT is ON, to enable the CPU JIT.

With the introduction of the JIT kernels, it is now possible to obtain
good performance in GraphBLAS without compiling the many factory ker-
nels that appear in the GraphBLAS/Source/FactoryKernels directory. If
the JIT is enabled, GraphBLAS will still be fast, once the JIT kernels are
compiled, or by using any PreJIT kernels. To compile GraphBLAS without
its FactoryKernels, enable the COMPACT option in the cmake build options.
By default, COMPACT is off, to enable the FactoryKernels.

When GraphBLAS is compiled with GRAPHBLAS_USE_JIT set to OFF,
the GxB_JIT_C_CONTROL may be set to GxB_JIT_OFF, GxB_JIT_PAUSE, or
GxB_JIT_RUN. No kernels will be loaded at run-time (the GxB_JIT_LOAD set-
ting is disabled and treated as GxB_JIT_RUN), and no new kernels will be com-
piled at run-time (the GxB_JIT_ON is disabled and treated as GxB_JIT_RUN).
Only pre-existing PreJIT kernels can be run, described in Section 9.3.

If both GRAPHBLAS_USE_JIT is set OFF and GRAPHBLAS_COMPACT is set ON,
all features of GraphBLAS will be functional. The only fast kernels available
will be the PreJIT kernels (if any). Otherwise, generic kernels will be used,
in which every single operator is implemented with a function pointer, and
every scalar assignment requires a memcpy. Generic kernels are slow, so using
this combination of options is not recommended when preparing GraphBLAS
for production use, benchmarking, or for a Linux distro or other widely-used
distribution, unless you are able to run your application in advance and create
all the JIT kernels you need, and then copy them into GraphBLAS/PreJIT.
This would be impossible to do for a general-purpose case such as a Linux
distro, but feasible for a more targetted application such as FalkorDB.

9.3 Adding PreJIT kernels to GraphBLAS

When GraphBLAS runs, it constructs JIT kernels in the user’s cache folder,
which by default is ~/.SuiteSparse/GrB8.0.0 for v8.0.0. The kernels placed
in a subfolder (c) and inside that folder they are further subdivided arbitrar-

173

ily into subfolders (via an arbitary hash). The files are split into subfolders
because a single folder may grow too large for efficient access. Once Graph-
BLAS has generated some kernels, some or all of them kernels can then
incorporated into the compiled GraphBLAS library by copying them into
the GraphBLAS/PreJIT folder. Be sure to move any *.c files into the single
GraphBLAS/PreJIT folder; do not keep the subfolder structure.

If GraphBLAS is then recompiled via cmake, the build system will detect
these kernels, compile them, and make them available as pre-compiled JIT
kernels. The kernels are no longer “Just-In-Time” kernels since they are
not compiled at run-time. They are refered to as PreJIT kernels since they
were at one time created at run-time by the GraphBLAS JIT, but are now
compiled into GraphBLAS before it runs.

It’s that simple. Just copy the source files for any kernels you want from
your cache folder (typically ~/.SuiteSparse/GrB8.0.0/c) into GraphBLAS/PreJIT,
and recompile GraphBLAS. There’s no need to change any other cmake set-
ting, and no need to do anything different in any applications that use Graph-
BLAS. Do not copy the compiled libraries; they are not needed and will be
ignored. Just copy the *.c files.

If the resulting GraphBLAS library is installed for system-wide usage (say
in a Linux distro, Python, RedisGraph, FalkorDB, etc), the GraphBLAS/PreJIT
kernels will be available to all users of that library. They are not disabled by
the GRAPHBLAS_USE_JIT option.

Once these kernels are moved to GraphBLAS/PreJIT and GraphBLAS is
recompiled, they can be deleted from the cache folder. However, even if
they are left there, they will not be used since GraphBLAS will find these
kernels as PreJIT kernels inside the compiled library itself (libgraphblas.so
on Linux, libgraphblas.dylib on the Mac). GraphBLAS will not be any
slower if these kernels are left in the cache folder, and the compiled library
size will not be affected.

If the GraphBLAS version is changed at all (even in the last digit), all
GB_jit_*.c files in the GraphBLAS/PreJIT folder should be deleted. The
version mismatch will be detected during the call to GrB_init, and any stale
kernels will be safely ignored. Likewise, if a user-defined type or operator is
changed, the relevant kernels should also be deleted from GraphBLAS/PreJIT.
For example, the GraphBLAS/Demo/Program/gauss_demo.c program creates
a user-defined gauss type, and two operators, addgauss and multgauss.
It then intentionally changes one of the operators just to test this feature.
If the type and/or operators are changed, then the *gauss*.c files in the

174

GraphBLAS/PreJIT folder should be deleted.
GraphBLAS will safely detect any stale PreJIT kernels by checking them

the first time they are run after calling GrB_init and will not use them if
they are found to be stale. If the JIT control is set to GxB_JIT_OFF all PreJIT
kernels are flagged as unchecked. If the JIT is then renabled by setting the
control to GxB_JIT_RUN or GxB_JIT_ON, all PreJIT kernels will be checked
again and any stale kernels will be detected.

If a stale PreJIT kernel is found, GraphBLAS will use its run-time JIT
to compile new ones with the current definitions, or it will punt to a generic
kernel if JIT compilation is disabled. GraphBLAS will be functional, and
fast if it can rely on a JIT kernel, but the unusable stale PreJIT kernels
take up space inside the compiled GraphBLAS library. The best practice
is to delete any stale kernels from the GraphBLAS/PreJIT folder, or replace
them with newly compiled JIT kernels from the cache folder, and recompile
GraphBLAS.

It is safe to copy only a subset of the JIT kernels from the cache folder into
GraphBLAS/PreJIT. You may also delete any files in GraphBLAS/PreJIT and
recompile GraphBLAS without those kernels. If GraphBLAS encounters a
need for a particular kernel that has been removed from GraphBLAS/PreJIT,
it will create it at run-time via the JIT, if permitted. If not permitted,
by either compiling GraphBLAS with the GRAPHBLAS_USE_JIT option set
ot OFF, or by using GxB_JIT_C_CONTROL at run-time, the factory kernel or
generic kernel will be used instead. The generic kernel will be slower than
the PreJIT or JIT kernel, but GraphBLAS will still be functional.

In addition to a single README.txt file, the GraphBLAS/PreJIT folder
includes a .gitignore file that prevents any files in the folder from being
synced via git. If you wish to add your PreJIT kernels to a fork of Graph-
BLAS, you will need to revise this .gitignore file.

9.4 JIT and PreJIT performance considerations

To create a good set of PreJIT kernels for a particular user application, it
is necessary to run the application with many different kinds of workloads.
Each JIT or PreJIT kernel is specialized to the particular matrix format,
data type, operators, and descriptors of its inputs. GraphBLAS can change
a matrix format (from sparse to hypersparse, for example), at its discretion,
thus triggering the use of a different kernel. Some GraphBLAS methods
use heuristics to select between different methods based upon the sparsity

175

structure or estimates of the kind or amount of work required. In these cases,
entirely different kernels will be compiled. As a result, it’s very difficult to
predict which kernels GraphBLAS will find the need to compile, and thus a
wide set of test cases should be used in an application to allow GraphBLAS
to generate as many kernels as could be expected to appear in production
use.

GraphBLAS can encounter very small matrices, and it will often select its
bitmap format to store them. This change of format will trigger a different
kernel than the sparse or hypersparse cases. There are many other cases like
that where specific kernels are only needed for small problems. In this case,
compiling an entirely new kernel is costly, since using a compiled kernel will
be no faster than the generic kernel. When benchmarking an application to
allow GraphBLAS to compile its JIT kernels, it may be useful to pause the
JIT via GxB_JIT_PAUSE, GxB_JIT_RUN, or GxB_JIT_LOAD, when the applica-
tion knows it is calling GraphBLAS for tiny problems. These three settings
keep any loaded JIT kernels in memory, but pauses the compilation of any
new JIT kernels. Then the control can be reset to GxB_JIT_ON once the ap-
plication finishes with its tiny problems and moves to larger ones where the
JIT will improve performance. A future version of GraphBLAS may allow
this heuristic to be implemented inside GraphBLAS itself, but for now, the
JIT does not second guess the user application; if it wants a new kernel, the
JIT will compile it if the control is set to GxB_JIT_ON.

9.5 Mixing JIT kernels: MATLAB and Apple Silicon

In general, the JIT kernels compiled by the C interface and the kernels com-
piled while using GraphBLAS in MATLAB are interchangable, and the same
cache folder can be used for both. This is the default.

However, when using the @GrB MATLAB interface to GraphBLAS on
Apple Silicon, using an older version of MATLAB, the MATLAB JIT kernels
are compiled as x86 binaries and executed inside MATLAB via Rosetta. The
pure C installation may compile native Arm64 binaries for its JIT kernels.
Do not mix the two. In this case, set another cache path for MATLAB using
GrB.jit in MATLAB, or using GrB_set in the C interface for your native
Arm64 binaries.

This issue does not apply to for recent MATLAB versions on the Mac,
which are native.

176

9.6 Updating the JIT when GraphBLAS source code
changes

If you edit the GraphBLAS source code itself or add any files to GraphBLAS/PreJIT,
read the instructions in GraphBLAS/JITpackage/README.txt for details on
how to update the JIT source code.

If your cache folder (~/.SuiteSparse/GrBx.y.z) changes in any way
except via GraphBLAS itself, simply delete your cache folder. GraphBLAS
will then reconstruct the kernels there as needed.

9.7 Future plans for the JIT and PreJIT

9.7.1 Kernel fusion

The introduction of the JIT and its related PreJIT kernels allow for the future
exploitation of kernel fusion via an aggressive exploitation of the GraphBLAS
non-blocking mode. In that mode, multiple calls to GraphBLAS can be
fused into a single kernel. There are far to many possible variants to allow
a fused kernel to appear in the GraphBLAS/Source/FactoryKernels folder,
but specific fused kernels could be created by the JIT.

9.7.2 Heuristics for controlling the JIT

As mentioned in Section 9.4, GraphBLAS may compile JIT kernels that are
used for only tiny problems where the compile time of a single kernel will
dominate any performance gains from using the compiled kernel. A heuristic
could be introduced so that it compiles them only for larger problems. The
possible downside of this approach is that the same JIT kernels might be
needed later for larger problems.

9.7.3 CUDA / SYCL / OpenCL kernels

The CUDA JIT will enable NVIDIA GPUs to be exploited. There are simply
too many kernels to create at compile time as the “factory kernels.” This
CUDA JIT is in progress. A related JIT for SYCL / OpenCL kernels is
under consideration.

177

9.7.4 Better performance for multithreaded user programs:

This version is thread-safe when used in a multithread user application, but
a better JIT critical section (many readers, one writer) might be needed.
The current critical section may be sufficiently fast since the typical case of
work done inside the critical section is a single hash table lookup. However,
the performance issues related to this have not been tested. This has no
effect if all parallelism is exploited only within GraphBLAS. It only affects
the case when multiple user threads each call GraphBLAS in parallel (using
the GxB_Context; see Section 8).

178

10 GraphBLAS Options (GrB get and GrB set)

GraphBLAS includes two methods, GrB_get and GrB_set that allow the user
to query GraphBLAS objects and change their state. These two methods are
polymorphic wrappers for a suite of methods for each object.

The general polymorphic signatures of these methods are given below:

GrB_Info GrB_get (object, value, int field) ;

GrB_Info GrB_set (object, value, int field) ;

GrB_Info GrB_set (object, void *value, int field, size_t s) ;

where object can be any GraphBLAS object. The value can be a GrB_Scalar,
an int32_t (or a pointer to int32_t for GrB_get), a string (char *), or a
void * pointer. In the latter case, GrB_set requires an additional parameter
(size_t s) that specifies the size of the object pointed to by void *value.

The non-polymorphic names have the following format, where [OBJ] is
any GraphBLAS object.

GrB_Info GrB_[OBJ]_get_[KIND] (object, value, int field) ;

GrB_Info GrB_[OBJ]_set_[KIND] (object, value, int field) ;

GrB_Info GrB_[OBJ]_set_VOID (object, void *value, int field, size_t s) ;

The [KIND] suffix defines the type of second parameter, and can be:
Scalar (for GrB_Scalar), String (for char *), INT32 (for int32_t), and
SIZE (for size_t * for GrB_get only), and VOID (for void *).

The tables below list all the valid fields that can be used for each object.
Each table contains four columns: (1) the int, (2) a column labelled R/W,
(3) a column defining the C type, and a description. For the R/W column:

� If the R/W column of a table is R, then the value can be read by
GrB_get but not written by GrB_set.

� R/W means that both GrB_get and GrB_set can be used any number
of times, with different values.

� R/W1 means that GrB_get can be done multiple times, but GrB_set
can be used only once. Subsequent calls to GrB_set return the error
code GrB_ALREADY_SET.

� W means that only GrB_set can be used (any number of times), but
GrB_get cannot be done.

179

The second parameter (value) of GrB_get and GrB_set can take on sev-
eral different C types, and it can also be a GrB_Scalar that holds a value
with the given C type (or that can be typecasted to the given C type):

� int32_t: For GrB_set the value parameter is int32_t. For GrB_get
the value parameter is int32_t *. The following example sets the
global number of threads, and then retrieves that value into nthreads.

GrB_set (GrB_GLOBAL, 8, GxB_NTHREADS) ;

int32_t nthreads ;

GrB_get (GrB_GLOBAL, &nthreads, GxB_NTHREADS) ;

printf ("nthreads: %d\n", nthreads) ;

A GrB_Scalar can also be used for an int32_t value. For GrB_set,
the scalar must not be empty. Here is the same example but using a
GrB_Scalar instead:

GrB_Scalar s ;

GrB_Scalar_new (s, GrB_INT32) ;

GrB_Scalar_setElement (s, 8) ;

GrB_set (GrB_GLOBAL, s, GxB_NTHREADS) ;

GrB_get (GrB_GLOBAL, s, GxB_NTHREADS) ;

int32_t nthreads ;

GrB_Scalar_extractElement (&nthreads, s) ;

printf ("nthreads: %d\n", nthreads) ;

� char *: The value parameter is char * for both GrB_get and GrB_set.
A GrB_Scalar cannot be used. The size of the string required for
GrB_get is given by using a size_t * parameter with the same field.
For example:

size_t len ;

GrB_get (GrB_GLOBAL, &len, GrB_NAME) ;

char *name = malloc (len) ;

GrB_get (GrB_GLOBAL, name, GrB_NAME) ;

printf ("The library is: %s\n", name) ;

free (name) ;

To get the current JIT C compiler and then set it to something else:

180

size_t len ;

GrB_get (GrB_GLOBAL, &len, GxB_JIT_C_COMPILER_NAME) ;

char *compiler = malloc (len) ;

GrB_get (GrB_GLOBAL, compiler, GxB_JIT_C_COMPILER_NAME) ;

printf ("The current JIT compiler is: %s\n", compiler) ;

GrB_set (GrB_GLOBAL, "gcc", GxB_JIT_C_COMPILER_NAME) ;

GrB_get (GrB_GLOBAL, &len, GxB_JIT_C_COMPILER_NAME) ;

char *new_compiler = malloc (len) ;

GrB_get (GrB_GLOBAL, new_compiler, GxB_JIT_C_COMPILER_NAME) ;

printf ("The new JIT compiler is: %s\n", new_compiler) ;

free (compiler) ;

free (new_compiler) ;

� Other scalar data types (typically double): Only a GrB_Scalar can
be used. When using GrB_set with a GrB_Scalar, the scalar cannot
be empty. For example, to get then set the global GxB_HYPER_SWITCH
parameter to 0.3:

GrB_Scalar s ;

GrB_Scalar_new (s, GrB_FP64) ;

GrB_get (GrB_GLOBAL, s, GxB_HYPER_SWITCH) ;

double hs ;

GrB_Scalar_extractElement (&hs, s) ;

printf ("current hyper_switch: %g\n", hs) ;

GrB_Scalar_setElement (s, 0.3) ;

GrB_set (GrB_GLOBAL, s, GxB_HYPER_SWITCH) ;

� void *: This type is used for all other cases. For GrB_get, the array
must have the right size, just like a char * string. Use the same field
first, but with size_t *value as the second parameter to obtain the
size of the void * array, then use GrB_get with a void * array of the
right size. In some cases, the size is always the same. For example, to
query the operator of a monoid:

GrB_BinaryOp op ;

GrB_get (GrB_PLUS_MONOID_FP64, (void *) &op, GxB_MONOID_OPERATOR) ;

assert (op == GrB_PLUS_FP64) ;

For GrB_set, a fourth parameter is required to tell GraphBLAS the
size of the input array.

181

10.1 Enum types for get/set

The get/set methods share a int (enum) type to specify which component
of the object is to be set or retrieved.

typedef enum

{

// GrB_Descriptor only:

GrB_OUTP_FIELD = 0, // descriptor for output of a method

GrB_MASK_FIELD = 1, // descriptor for the mask input of a method

GrB_INP0_FIELD = 2, // descriptor for the first input of a method

GrB_INP1_FIELD = 3, // descriptor for the second input of a method

// all objects, including GrB_GLOBAL:

GrB_NAME = 10, // name of the object, as a string

// GrB_GLOBAL only:

GrB_LIBRARY_VER_MAJOR = 11, // SuiteSparse:GraphBLAS version

GrB_LIBRARY_VER_MINOR = 12,

GrB_LIBRARY_VER_PATCH = 13,

GrB_API_VER_MAJOR = 14, // C API version

GrB_API_VER_MINOR = 15,

GrB_API_VER_PATCH = 16,

GrB_BLOCKING_MODE = 17, // GrB_Mode

// GrB_GLOBAL, GrB_Matrix, GrB_Vector, GrB_Scalar (and void * serialize?):

GrB_STORAGE_ORIENTATION_HINT = 100, // GrB_Orientation

// GrB_Matrix, GrB_Vector, GrB_Scalar (and void * serialize):

GrB_EL_TYPE_CODE = 102, // a GrB_Type_code (see below)

GrB_EL_TYPE_STRING = 106, // name of the type

// GrB_*Op, GrB_Monoid, and GrB_Semiring:

GrB_INP1_TYPE_CODE = 103, // GrB_Type_code

GrB_INP2_TYPE_CODE = 104,

GrB_OUTP_TYPE_CODE = 105,

GrB_INP1_TYPE_STRING = 107, // name of the type, as a string

GrB_INP2_TYPE_STRING = 108,

GrB_OUTP_TYPE_STRING = 109,

// GrB_Type (readable only):

GrB_SIZE = 110, // size of the type

// GrB_Type, GrB_UnaryOp, GrB_BinaryOp, GrB_IndexUnaryOp,

// and GxB_IndexBinaryOp

GxB_JIT_C_NAME = 7041, // C type or function name

182

GxB_JIT_C_DEFINITION = 7042, // C typedef or function definition

// GrB_Monoid and GrB_Semiring:

GxB_MONOID_IDENTITY = 7043, // monoid identity value

GxB_MONOID_TERMINAL = 7044, // monoid terminal value

GxB_MONOID_OPERATOR = 7045, // monoid binary operator

// GrB_Semiring only:

GxB_SEMIRING_MONOID = 7046, // semiring monoid

GxB_SEMIRING_MULTIPLY = 7047, // semiring multiplicative op

// GrB_BinaryOp and GxB_IndexBinaryOp:

GxB_THETA_TYPE_CODE = 7050, // for binary and index binary ops

GxB_THETA_TYPE_STRING = 7051,

// GrB_BinaryOp or GrB_Semiring:

GxB_THETA = 7052, // to get the value of theta

// GrB_get/GrB_set for GrB_Matrix, GrB_Vector, GrB_Scalr and GrB_GLOBAL:

GxB_ROWINDEX_INTEGER_HINT = 7053, // hint for row indices

GxB_COLINDEX_INTEGER_HINT = 7054, // hint for column indices

GxB_OFFSET_INTEGER_HINT = 7056, // hint for offsets

GxB_HYPER_SWITCH = 7000, // switch to hypersparse (double value)

GxB_HYPER_HASH = 7048, // hyper_hash control (global int64 value,

// or bool per matrix)

GxB_BITMAP_SWITCH = 7001, // switch to bitmap (double value)

// GrB_get/GrB_set for GrB_Matrix, GrB_Vector, GrB_Scalar:

GxB_ISO = 7079, // get: returns the current iso status

// set true: make the matrix iso-valued, if possible.

// set false: make the matrix non-iso-valued.

GxB_SPARSITY_CONTROL = 7036, // sparsity control: 0 to 15; see below

// GrB_get for GrB_Matrix, GrB_Vector, GrB_Scalar:

GxB_ROWINDEX_INTEGER_BITS = 7057, // # bits for row indices

GxB_COLINDEX_INTEGER_BITS = 7058, // # bits for column indices

GxB_OFFSET_INTEGER_BITS = 7059, // # bits for offsets

GxB_SPARSITY_STATUS = 7034, // hyper, sparse, bitmap or full (1,2,4,8)

GxB_IS_READONLY = 7078, // true if it has any read-only components

GxB_WILL_WAIT = 7076, // true if GrB_wait(A) will do anything

// GrB_get for GrB_GLOBAL:

GxB_LIBRARY_DATE = 7006, // date of the library (char *)

GxB_LIBRARY_ABOUT = 7007, // about the library (char *)

GxB_LIBRARY_URL = 7008, // URL for the library (char *)

183

GxB_LIBRARY_LICENSE = 7009, // license of the library (char *)

GxB_LIBRARY_COMPILE_DATE = 7010, // date library was compiled (char *)

GxB_LIBRARY_COMPILE_TIME = 7011, // time library was compiled (char *)

GxB_API_DATE = 7013, // date of the API (char *)

GxB_API_ABOUT = 7014, // about the API (char *)

GxB_API_URL = 7015, // URL for the API (char *)

GxB_COMPILER_VERSION = 7016, // compiler version (3 int’s)

GxB_COMPILER_NAME = 7017, // compiler name (char *)

GxB_LIBRARY_OPENMP = 7018, // library compiled with OpenMP

GxB_MALLOC_FUNCTION = 7037, // malloc function pointer

GxB_CALLOC_FUNCTION = 7038, // calloc function pointer

GxB_REALLOC_FUNCTION = 7039, // realloc function pointer

GxB_FREE_FUNCTION = 7040, // free function pointer

// GrB_get/GrB_set for GrB_GLOBAL:

#define GxB_NTHREADS 7086

#define GxB_CHUNK 7087

GxB_GLOBAL_NTHREADS = GxB_NTHREADS, // max number of threads to use

GxB_GLOBAL_CHUNK = GxB_CHUNK, // chunk size for small problems.

GxB_BURBLE = 7019, // diagnostic output (bool *)

GxB_PRINTF = 7020, // printf function diagnostic output

GxB_FLUSH = 7021, // flush function diagnostic output

GxB_PRINT_1BASED = 7023, // print matrices as 0-based or 1-based

GxB_INCLUDE_READONLY_STATISTICS = 7077, // include read-only memory in

// memory usage statistics

GxB_JIT_C_COMPILER_NAME = 7024, // CPU JIT C compiler name

GxB_JIT_C_COMPILER_FLAGS = 7025, // CPU JIT C compiler flags

GxB_JIT_C_LINKER_FLAGS = 7026, // CPU JIT C linker flags

GxB_JIT_C_LIBRARIES = 7027, // CPU JIT C libraries

GxB_JIT_C_PREFACE = 7028, // CPU JIT C preface

GxB_JIT_C_CONTROL = 7029, // CPU JIT C control

GxB_JIT_CACHE_PATH = 7030, // CPU/CUDA JIT path for compiled kernels

GxB_JIT_C_CMAKE_LIBS = 7031, // CPU JIT C libraries when using cmake

GxB_JIT_USE_CMAKE = 7032, // CPU JIT: use cmake or direct compile

GxB_JIT_ERROR_LOG = 7033, // CPU JIT: error log file

} GxB_Option_Field ;

typedef enum

{

GrB_ROWMAJOR = 0,

GrB_COLMAJOR = 1,

GrB_BOTH = 2,

GrB_UNKNOWN = 3,

}

184

GrB_Orientation ;

typedef enum

{

GrB_UDT_CODE = 0, // user-defined type

GrB_BOOL_CODE = 1, // GraphBLAS: GrB_BOOL C: bool

GrB_INT8_CODE = 2, // GraphBLAS: GrB_INT8 C: int8_t

GrB_UINT8_CODE = 3, // GraphBLAS: GrB_UINT8 C: uint8_t

GrB_INT16_CODE = 4, // GraphBLAS: GrB_INT16 C: int16_t

GrB_UINT16_CODE = 5, // GraphBLAS: GrB_UINT16 C: uint16_t

GrB_INT32_CODE = 6, // GraphBLAS: GrB_INT32 C: int32_t

GrB_UINT32_CODE = 7, // GraphBLAS: GrB_UINT32 C: uint32_t

GrB_INT64_CODE = 8, // GraphBLAS: GrB_INT64 C: int64_t

GrB_UINT64_CODE = 9, // GraphBLAS: GrB_UINT64 C: uint64_t

GrB_FP32_CODE = 10, // GraphBLAS: GrB_FP32 C: float

GrB_FP64_CODE = 11, // GraphBLAS: GrB_FP64 C: double

GxB_FC32_CODE = 7070, // GraphBLAS: GxB_FC32 C: float complex

GxB_FC64_CODE = 7071, // GraphBLAS: GxB_FC64 C: double complex

}

GrB_Type_Code ;

10.2 Global Options (GrB Global)

A single object GrB_GLOBAL whose type is GrB_Global is used to denote
global settings to read or modify. To use it with GrB_get and GrB_set, pass
in GrB_GLOBAL as the first parameter.

GrB_Info GrB_get (GrB_Global g, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_Global g, char * value, int f) ;

GrB_Info GrB_get (GrB_Global g, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_Global g, size_t * value, int f) ;

GrB_Info GrB_get (GrB_Global g, void * value, int f) ;

GrB_Info GrB_set (GrB_Global g, GrB_Scalar value, int f) ;

GrB_Info GrB_set (GrB_Global g, char * value, int f) ;

GrB_Info GrB_set (GrB_Global g, int32_t value, int f) ;

GrB_Info GrB_set (GrB_Global g, void * value, int f, size_t s) ;

185

int field R/W C type description

GrB_LIBRARY_VER_MAJOR R int32_t major version of the library
GrB_LIBRARY_VER_MINOR R int32_t minor version of the library
GrB_LIBRARY_VER_PATCH R int32_t patch version of the library
GrB_API_VER_MAJOR R int32_t major version of the API
GrB_API_VER_MINOR R int32_t major version of the API
GrB_API_VER_PATCH R int32_t major version of the API
GrB_BLOCKING_MODE R int32_t blocking mode (GrB_BLOCKING

or GrB_NONBLOCKING)
GxB_LIBRARY_OPENMP R int32_t if OpenMP is in use (true/false)
GrB_STORAGE_ORIENTATION_HINT R/W int32_t see GrB_Orientation: default format

for matrices.
GxB_NTHREADS R/W int32_t number of OpenMP threads used.

See Section 10.2.2.
GxB_BURBLE R/W int32_t diagnostic output (true/false).

See Section 10.2.1.
GxB_PRINT_1BASED R/W int32_t matrices printed as 1-based or 0-based
GxB_INCLUDE_READONLY_STATISTICS R/W int32_t include read-only memory in statistics
GxB_JIT_C_CONTROL R/W int32_t see Section 9
GxB_JIT_USE_CMAKE R/W int32_t ”
GxB_ROWINDEX_INTEGER_HINT R/W int32_t hint for row indices (32 or 64)
GxB_COLINDEX_INTEGER_HINT R/W int32_t hint for column indices (32 or 64)
GxB_OFFSET_INTEGER_HINT R/W int32_t hint for offsets (32 or 64)

GxB_HYPER_SWITCH R/W double global hypersparsity control.
See Section 10.10.2.

GxB_HYPER_HASH R/W int64_t global hypersparsity (hyper-hash)
control

GxB_CHUNK R/W double global chunk size for parallel task cre-
ation. See Section 10.2.2.

GrB_NAME R char * name of the library
("SuiteSparse:GraphBLAS")

GxB_LIBRARY_DATE R char * library release date
GxB_LIBRARY_ABOUT R char * details about the library
GxB_LIBRARY_LICENSE R char * license of the library
GxB_LIBRARY_COMPILE_DATE R char * date the library was compiled
GxB_LIBRARY_COMPILE_TIME R char * time the library was compiled
GxB_LIBRARY_URL R char * URL for the library
GxB_API_DATE R char * C API release date
GxB_API_ABOUT R char * about the C API
GxB_API_URL R char * URL for the C API
GxB_COMPILER_NAME R char * name of the compiler used to compile

the library
186

int field R/W C type description

GxB_JIT_C_COMPILER_NAME R/W char * See Section 9
GxB_JIT_C_COMPILER_FLAGS R/W char * ”
GxB_JIT_C_LINKER_FLAGS R/W char * ”
GxB_JIT_C_LIBRARIES R/W char * ”
GxB_JIT_C_CMAKE_LIBS R/W char * ”
GxB_JIT_C_PREFACE R/W char * ”
GxB_JIT_ERROR_LOG R/W char * ”
GxB_JIT_CACHE_PATH R/W char * ”

GxB_BITMAP_SWITCH R/W void * double array of size
GxB_NBITMAP_SWITCH.
See Section 10.10.3.

GxB_COMPILER_VERSION R void * int32_t array of size 3. The version
of the compiler used to compile the li-
brary.

GxB_PRINTF W void * pointer to printf function for diag-
nostic output. See Section 10.2.1.

GxB_FLUSH W void * pointer to flush function for diagnos-
tic output. See Section 10.2.1.

GxB_MALLOC_FUNCTION R void * malloc function
GxB_CALLOC_FUNCTION R void * calloc function
GxB_REALLOC_FUNCTION R void * realloc function
GxB_FREE_FUNCTION R void * free function

10.2.1 Global diagnostic settings

GrB_set (GrB_GLOBAL, ..., GxB_BURBLE) controls the burble setting. It
can also be controlled via GrB.burble(b) in the MATLAB/Octave interface.

GrB_set (GrB_GLOBAL, true, GxB_BURBLE) ; // enable burble

GrB_set (GrB_GLOBAL, false, GxB_BURBLE) ; // disable burble

If enabled, SuiteSparse:GraphBLAS reports which internal kernels it uses,
and how much time is spent. If you see the word generic, it means that
SuiteSparse:GraphBLAS was unable to use its JIT kernels, or its faster ker-
nels in Source/FactoryKernels, but used a generic kernel that relies on
function pointers. This is done for user-defined types and operators when
they cannot be used in the JIT, and when typecasting is performed. Generic
kernels are typically slower than the JIT kernels or kernels in Source/FactoryKernels.

187

If you see a lot of wait statements, it may mean that a lot of time is
spent finishing a matrix or vector. This may be the result of an inefficient
use of the setElement and assign methods. If this occurs you might try
changing the sparsity format of a vector or matrix to GxB_BITMAP, assuming
there’s enough space for it.

The following setting allows the user application to change the function
used to print diagnostic output:

GrB_set (GrB_GLOBAL, (void *) printf, GxB_PRINTF, sizeof (void *)) ;

This also controls the output of the GxB_*print functions. By default this
parameter is NULL, in which case the C11 printf function is used. The pa-
rameter is a function pointer with the same signature as the C11 printf func-
tion. The MATLAB/Octave interface to GraphBLAS sets it to mexPrintf

so that GraphBLAS can print to the MATLAB/Octave Command Window.
After each call to the printf function, an optional flush function is

called, which is NULL by default. If NULL, the function is not used. This can
be changed with:

GrB_set (GrB_GLOBAL, (void *) flush, GxB_FLUSH, sizeof (void *)) ;

The flush function takes no arguments, and returns an int which is 0
if successful, or any nonzero value on failure (the same output as the C11
fflush function, except that flush has no inputs).

10.2.2 OpenMP parallelism

SuiteSparse:GraphBLAS is a parallel library, based on OpenMP. By de-
fault, all GraphBLAS operations will use up to the maximum number of
threads specified by the omp_get_max_threads OpenMP function. For small
problems, GraphBLAS may choose to use fewer threads, using two param-
eters: the maximum number of threads to use (which may differ from the
omp_get_max_threads value), and a parameter called the chunk. Suppose
work is a measure of the work an operation needs to perform (say the num-
ber of entries in the two input matrices for GrB_eWiseAdd). No more than
floor(work/chunk) threads will be used (or one thread if the ratio is less
than 1).

GxB_NTHREADS controls how many threads a method uses. By default (if
set to zero, or GrB_DEFAULT), all available threads are used. The maximum

188

available threads is controlled by the global setting, which is omp_get_max_threads ()

by default. If set to some positive integer nthreads less than this maximum,
at most nthreads threads will be used.

GxB_CHUNK is a double value that controls how many threads a method
uses for small problems. The default chunk value is 65,536, but this may
change in future versions, or it may be modified when GraphBLAS is installed
on a particular machine.

Both parameters can be set in two ways:

� Globally: If the following methods are used, then all subsequent Graph-
BLAS operations will use these settings. Note the typecast, (double)
chunk. This is necessary if a literal constant such as 20000 is passed
as this argument. The type of the constant must be double.

int32_t nthreads_max = 40 ;

GrB_set (GrB_GLOBAL, nthreads_max, GxB_NTHREADS) ;

GrB_Scalar_new (&s, GrB_FP64) ;

GrB_Scalar_setElement (s, (double) 20000) ;

GrB_set (GrB_GLOBAL, s, GxB_CHUNK) ;

� Context: this object can be used to choose a different number of threads
used in calls to GraphBLAS from different user threads, exploiting
nested parallelism. Refer to Section 8. If a thread has engaged a
context object, it ignores the global settings for GxB_NTHREADS and
GxB_CHUNK, and uses the settings in its own context instead.

The smaller of nthreads_max and floor(work/chunk) is used for any
given GraphBLAS operation, except that a single thread is used if this value
is zero or less.

If either parameter is set to GrB_DEFAULT, then default values are used.
The default for nthreads_max is the return value from omp_get_max_threads,
and the default chunk size is currently 65,536.

If a descriptor value for either parameter is left at its default, or set to
GrB_DEFAULT, then the global setting is used. This global setting may have
been modified from its default, and this modified value will be used.

For example, suppose omp_get_max_threads reports 8 threads. If
GrB_set (GrB_GLOBAL, 4, GxB_NTHREADS) is used, then the global setting
is four threads, not eight.

189

GraphBLAS may be compiled without OpenMP, by setting -DNOPENMP=1.
The library will be thread-safe, with one exception. GrB_wait is intended
to provide thread-safety by flushing the cache of one user thread so the
object can be safely read by another thread. This is accomplished with
pragma omp flush, but if OpenMP is not available, this does nothing. If
OpenMP is not available or -DNOPEMP=1 is used, then user applications need
to ensure their own thread safety when one user thread computes a result
that is then read by another thread.

You can query GraphBLAS at run-time to ask if it was compiled with
OpenMP:

bool have_openmp ;

GrB_get (GrB_GLOBAL, &have_openmp, GxB_LIBRARY_OPENMP) ;

if (!have_openmp) printf ("GraphBLAS not compiled with OpenMP\n") ;

Compiling GraphBLAS without OpenMP is not recommended for instal-
lation in a package manager (Linux, conda-forge, spack, brew, vcpkg, etc).

10.2.3 Other global options

GrB_BLOCKING_MODE can only be queried by GrB_get; it cannot be modified
by GrB_set. The mode is the value passed to GrB_init (blocking or non-
blocking).

All threads in the same user application share the same global options,
including hypersparsity, bitmap options, and CSR/CSC format determined
by GrB_set, and the blocking mode determined by GrB_init. Specific format
and hypersparsity parameters of each matrix are specific to that matrix and
can be independently changed.

The GrB_LIBRARY_* and GxB_LIBRARY_* options can be used to query
the current implementation of SuiteSparse:GraphBLAS. The GrB_API_* and
GxB_API_* options can be used to query the current GraphBLAS C API
Specification.

190

10.3 GrB Type Options

GrB_Info GrB_get (GrB_Type t, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_Type t, char * value, int f) ;

GrB_Info GrB_get (GrB_Type t, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_Type t, size_t * value, int f) ;

GrB_Info GrB_set (GrB_Type t, char * value, int f) ;

int field R/W C type description

GrB_EL_TYPE_CODE R int32_t type code (see GrB_Type_Code)
GrB_SIZE R size_t sizeof the type

GrB_NAME R/W1 char * name of the type. For built-in types, this
returns the GraphBLAS name ("GrB_FP32"
for GrB_FP32, for example). For user-
defined types, the name can be any string
of any length. It is not used by the JIT. It
can be set at most once.

GxB_JIT_C_NAME R/W1 char * This must be a valid name of a C type
to enable its use in the JIT. For built-
in types, this returns the C name of the
type ("float" for GrB_FP32, for example).
The length of the name can be at most
GxB_MAX_NAME_LEN, including the nul ter-
minating byte. It can be set at most once.

GxB_JIT_C_DEFINITION R/W1 char * type definition, as a C typedef; built-in
types return an empty string. It can be set
at most once.

Built-in types cannot be modified by GrB_set. User-defined types can be
used without setting their name or definition, but they can be used in JIT
kernels only when both the JIT C name and the definition are set.

To use the JIT, all operators, monoids, and semirings that access this
type must be defined after the user-defined type has been given both a name
and a definition. GraphBLAS can use an operator that uses a type without
a name, but it cannot use the JIT, even if the type is given a name later on
after the operator is created.

The size of the type can be returned as a size_t C scalar, or as a
GrB_Scalar, normally of type GrB_UINT64, with the examples below.

size_t size ;

191

GrB_get (GrB_FP32, &size, GrB_SIZE) ;

assert (size == sizeof (float)) ;

GrB_Scalar s ;

GrB_Scalar_new (&s, GrB_UINT64) ;

GrB_get (GrB_FP32, s, GrB_SIZE) ;

GrB_Scalar_extractElement (&size, s) ;

assert (size == sizeof (float)) ;

192

10.4 GrB UnaryOp Options

GrB_Info GrB_get (GrB_UnaryOp op, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_UnaryOp op, char * value, int f) ;

GrB_Info GrB_get (GrB_UnaryOp op, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_UnaryOp op, size_t * value, int f) ;

GrB_Info GrB_set (GrB_UnaryOp op, char * value, int f) ;

int field R/W C type description

GrB_INP0_TYPE_CODE R int32_t input type code (see GrB_Type_code)
GrB_OUTP_TYPE_CODE R int32_t output type code
GrB_INP0_TYPE_STRING R char * name of the input type
GrB_OUTP_TYPE_STRING R char * name of the output type

GrB_NAME R/W1 char * name of the operator. For built-in oper-
ators, this returns the GraphBLAS name
("GrB_LNOT" for GrB_LNOT, for example).
For user-defined operators, the name can
be any string of any length. It is not used
by the JIT. It can be set at most once.

GxB_JIT_C_NAME R/W1 char * This must be a valid name of a C
function to enable its use in the JIT.
The length of the name can be at most
GxB_MAX_NAME_LEN, including the nul ter-
minating byte. It can be set at most once.

GxB_JIT_C_DEFINITION R/W1 char * definition for a user-defined operator, as
a C function; built-in operators return an
empty string. It can be set at most once.

Built-in operators cannot be modified by GrB_set. User-defined operators
can be used without setting their name or definition, but they can be used
in JIT kernels only when both the JIT C name and the definition are set.

193

10.5 GrB IndexUnaryOp Options

GrB_Info GrB_get (GrB_IndexUnaryOp op, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_IndexUnaryOp op, char * value, int f) ;

GrB_Info GrB_get (GrB_IndexUnaryOp op, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_IndexUnaryOp op, size_t * value, int f) ;

GrB_Info GrB_set (GrB_IndexUnaryOp op, char * value, int f) ;

int field R/W C type description

GrB_INP0_TYPE_CODE R int32_t 1st input type code (see GrB_Type_code)
GrB_INP1_TYPE_CODE R int32_t 2nd input type code
GrB_OUTP_TYPE_CODE R int32_t output type code
GrB_INP0_TYPE_STRING R char * name of the 1st input type
GrB_INP1_TYPE_STRING R char * name of the 2nd input type
GrB_OUTP_TYPE_STRING R char * name of the output type

GrB_NAME R/W1 char * name of the operator. For built-in oper-
ators, this returns the GraphBLAS name
("GrB_TRIL" for GrB_TRIL, for example).
For user-defined operators, the name can
be any string of any length. It is not used
by the JIT. It can be set at most once.

GxB_JIT_C_NAME R/W1 char * This must be a valid name of a C
function to enable its use in the JIT.
The length of the name can be at most
GxB_MAX_NAME_LEN, including the nul ter-
minating byte. It can be set at most once.

GxB_JIT_C_DEFINITION R/W1 char * definition for a user-defined operator, as
a C function; built-in operators return an
empty string. It can be set at most once.

Built-in operators cannot be modified by GrB_set. User-defined operators
can be used without setting their name or definition, but they can be used
in JIT kernels only when both the JIT C name and the definition are set.

194

10.6 GrB BinaryOp Options

GrB_Info GrB_get (GrB_BinaryOp op, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_BinaryOp op, char * value, int f) ;

GrB_Info GrB_get (GrB_BinaryOp op, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_BinaryOp op, size_t * value, int f) ;

GrB_Info GrB_set (GrB_BinaryOp op, char * value, int f) ;

int field R/W C type description

GrB_INP0_TYPE_CODE R int32_t 1st input type code (see GrB_Type_code)
GrB_INP1_TYPE_CODE R int32_t 2nd input type code
GrB_OUTP_TYPE_CODE R int32_t output type code
GxB_THETA_TYPE_CODE R int32_t Θ type code, if any
GrB_INP0_TYPE_STRING R char * name of the 1st input type
GrB_INP1_TYPE_STRING R char * name of the 2nd input type
GrB_OUTP_TYPE_STRING R char * name of the output type
GxB_THETA_TYPE_STRING R char * name of the Θ type, if any

GrB_NAME R/W1 char * name of the operator. For built-in oper-
ators, this returns the GraphBLAS name
("GrB_LOR" for GrB_LOR, for example). For
user-defined operators, the name can be
any string of any length. It is not used
by the JIT. It can be set at most once.

GxB_JIT_C_NAME R/W1 char * This must be a valid name of a C
function to enable its use in the JIT.
The length of the name can be at most
GxB_MAX_NAME_LEN, including the nul ter-
minating byte. It can be set at most once.

GxB_JIT_C_DEFINITION R/W1 char * definition for a user-defined operator, as
a C function; built-in operators return an
empty string. It can be set at most once.

GxB_THETA R GrB_Scalar value of Theta, if any. The type of the
GrB_Scalar must match the Theta type of
the underlying index-binary operator ex-
actly.

Built-in operators cannot be modified by GrB_set. User-defined operators
can be used without setting their name or definition, but they can be used
in JIT kernels only when both the JIT C name and the definition are set.

To use the JIT, all monoids and semirings that access this binary operator

195

must be defined after the user-defined operator has been given both a name
and a definition. GraphBLAS can use a monoid or semiring that uses a binary
operator without a name, but it cannot use the JIT, even if the operator is
given a name later on after the operator is created.

The *THETA* options can only be used in a binary operator created by
GxB_BinaryOp_new_IndexOp.

196

10.7 GxB IndexBinaryOp Options

GrB_Info GrB_get (GxB_IndexBinaryOp op, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GxB_IndexBinaryOp op, char * value, int f) ;

GrB_Info GrB_get (GxB_IndexBinaryOp op, int32_t * value, int f) ;

GrB_Info GrB_get (GxB_IndexBinaryOp op, size_t * value, int f) ;

GrB_Info GrB_set (GxB_IndexBinaryOp op, char * value, int f) ;

int field R/W C type description

GrB_INP0_TYPE_CODE R int32_t 1st input type code (see GrB_Type_code)
GrB_INP1_TYPE_CODE R int32_t 2nd input type code
GrB_OUTP_TYPE_CODE R int32_t output type code
GxB_THETA_TYPE_CODE R int32_t Θ type code
GrB_INP0_TYPE_STRING R char * name of the 1st input type
GrB_INP1_TYPE_STRING R char * name of the 2nd input type
GrB_OUTP_TYPE_STRING R char * name of the output type
GxB_THETA_TYPE_STRING R char * name of the Θ type

GrB_NAME R/W1 char * name of the operator. For user-defined op-
erators, the name can be any string of any
length. It is not used by the JIT. It can be
set at most once.

GxB_JIT_C_NAME R/W1 char * This must be a valid name of a C
function to enable its use in the JIT.
The length of the name can be at most
GxB_MAX_NAME_LEN, including the nul ter-
minating byte. It can be set at most once.

GxB_JIT_C_DEFINITION R/W1 char * definition for a user-defined operator, as
a C function; built-in operators return an
empty string. It can be set at most once.

There are no built-in index-binary operators, but if there are in the future,
they will not be be modified by GrB_set. User-defined operators can be used
without setting their name or definition, but they can be used in JIT kernels
only when both the JIT C name and the definition are set.

To use the JIT, all semirings that access this index-binary operator must
be defined after the user-defined operator has been given both a name and
a definition. GraphBLAS can use a semiring that uses a binary operator
without a name, but it cannot use the JIT, even if the operator is given a
name later on after the operator is created.

197

10.8 GrB Monoid Options

GrB_Info GrB_get (GrB_Monoid monoid, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_Monoid monoid, char * value, int f) ;

GrB_Info GrB_get (GrB_Monoid monoid, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_Monoid monoid, size_t * value, int f) ;

GrB_Info GrB_get (GrB_Monoid monoid, void * value, int f) ;

GrB_Info GrB_set (GrB_Monoid monoid, char * value, int f) ;

int field R/W C type description

GrB_INP0_TYPE_CODE R int32_t 1st input type code
(see GrB_Type_code)

GrB_INP1_TYPE_CODE R int32_t 2nd input type code
GrB_OUTP_TYPE_CODE R int32_t output type code
GrB_INP0_TYPE_STRING R char * name of the 1st input type
GrB_INP1_TYPE_STRING R char * name of the 2nd input type
GrB_OUTP_TYPE_STRING R char * name of the output type

GrB_NAME R/W1 char * name of the monoid. For built-in
monoids, this returns the GraphBLAS
name ("GrB_LOR_MONOID_BOOL" for
GrB_LOR_MONOID_BOOL, for example).
For user-defined monoids, the name
can be any string of any length. It
is not used by the JIT. It can be set
at most once.

GxB_MONOID_IDENTITY R GrB_Scalar identity value of the monoid. The type
of the GrB_Scalar must match the
monoid type exactly.

GxB_MONOID_TERMINAL R GrB_Scalar terminal value of a terminal monoid.
The type of the GrB_Scalar must
match the monoid type exactly. If
the monoid is not terminal, the
GrB_Scalar is returned with no entry.

GxB_MONOID_OPERATOR R void * binary operator of the monoid, as a
GrB_BinaryOp

Built-in monoids cannot be modified by GrB_set.
For GxB_MONOID_OPERATOR, the op is returned as an alias, not as a new

object. For example, if a monoid is created with a user-defined binary oper-
ator, the following usage returns a shallow copy of the operator:

198

GrB_BinaryOp binop ;

GrB_BinaryOp_new (&binop, func, GrB_BOOL, GrB_BOOL, GrB_BOOL) ;

GrB_Monoid monoid ;

GrB_Monoid_new (&monoid, binop, (bool) false) ;

With the above objects defined, the following two code snippets do the
same thing:

// getting an alias to the binary operator directly:

GrB_BinaryOp op ;

op = binop ;

// getting an alias to the binary operator using GrB_get:

GrB_BinaryOp op ;

GrB_get (monoid, (void *) &op, GxB_MONOID_OPERATOR) ;

assert (op == binop) ;

As a result, it is not valid to free both the op and the binop, since they
are the same object. This usage returns the built-in GrB_LOR operator of the
corresponding built-in monoid:

GrB_BinaryOp op ;

GrB_get (GrB_LOR_MONOID, (void *) &op, GxB_MONOID_OPERATOR) ;

assert (op == GrB_LOR) ;

199

10.9 GrB Semiring Options

GrB_Info GrB_get (GrB_Semiring semiring, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_Semiring semiring, char * value, int f) ;

GrB_Info GrB_get (GrB_Semiring semiring, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_Semiring semiring, size_t * value, int f) ;

GrB_Info GrB_get (GrB_Semiring semiring, void * value, int f) ;

GrB_Info GrB_set (GrB_Semiring semiring, GrB_Scalar value, int f) ;

int field R/W C type description

GrB_INP0_TYPE_CODE R int32_t 1st input type code (see GrB_Type_code)
of the multiplicative operator

GrB_INP1_TYPE_CODE R int32_t 2nd input type code of the multiplicative
operator

GrB_OUTP_TYPE_CODE R int32_t output type code of the multiplicative op-
erator, and the monoid type.

GxB_THETA_TYPE_CODE R int32_t Θ type code, if any
GrB_INP0_TYPE_STRING R char * name of the 1st input type of the multi-

plicative operator
GrB_INP1_TYPE_STRING R char * name of the 2nd input type of the multi-

plicative operator
GrB_OUTP_TYPE_STRING R char * name of the output type of the multiplica-

tive operator, and the monoid type.
GxB_THETA_TYPE_STRING R char * name of the Θ type, if any

GrB_NAME R/W1 char * name of the semiring. For built-in
semirings, this returns the GraphBLAS
name ("GrB_LOR_LAND_SEMIRING_BOOL"
for GrB_LOR_LAND_SEMIRING_BOOL, for
example). For user-defined semirings, the
name can be any string of any length. It
is not used by the JIT. It can be set at
most once.

GxB_THETA R GrB_Scalar value of Theta, if any. The type of the
GrB_Scalar must match the Theta type of
the underlying index-binary operator ex-
actly.

200

int field R/W C type description

GxB_MONOID_IDENTITY R GrB_Scalar identity value of the monoid. The type
of the GrB_Scalar must match the
monoid type exactly.

GxB_MONOID_TERMINAL R GrB_Scalar terminal value of a terminal monoid.
The type of the GrB_Scalar must
match the monoid type exactly. If
the monoid is not terminal, the
GrB_Scalar is returned with no entry.

GxB_MONOID_OPERATOR R void * binary operator of the monoid, as a
GrB_BinaryOp; See Section 10.8

GxB_SEMIRING_MONOID R void * monoid of the semiring, as a
GrB_Monoid

GxB_SEMIRING_MULTIPLY R void * multiplicative operator of the semir-
ing, as a GrB_BinaryOp

Built-in semirings cannot be modified by GrB_set.
The GxB_SEMIRING_MONOID option returns the GrB_Monoid of the semir-

ing. The GxB_SEMIRING_MULTIPLY option returns the GrB_BinaryOp for the
multiplicative operator of the semiring. For example:

// getting an alias to the monoid and multiply operator using GrB_get:

GrB_BinaryOp op ;

GrB_Monoid mon ;

GrB_Semiring semiring = GrB_PLUS_TIMES_FP32 ;

GrB_get (semiring, (void *) &mon, GxB_SEMIRING_MONOID) ;

GrB_get (semiring, (void *) &op, GxB_SEMIRING_MULTIPLY) ;

assert (op == GrB_TIMES_FP32) ;

assert (mon == GrB_PLUS_MONOID_FP32) ;

The binary op and monoid returned are aliases, not new objects.
The *THETA* options can only be used in the multiplicative binary oper-

ator of the semiring was created by GxB_BinaryOp_new_IndexOp.

201

10.10 GrB Matrix Options

GrB_Info GrB_get (GrB_Matrix A, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_Matrix A, char * value, int f) ;

GrB_Info GrB_get (GrB_Matrix A, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_Matrix A, size_t * value, int f) ;

GrB_Info GrB_set (GrB_Matrix A, GrB_Scalar value, int f) ;

GrB_Info GrB_set (GrB_Matrix A, char * value, int f) ;

GrB_Info GrB_set (GrB_Matrix A, int32_t value, int f) ;

int field R/W C type description

GrB_STORAGE_ORIENTATION_HINT R/W int32_t See GrB_Orientation,
and Section 10.10.1.

GrB_EL_TYPE_CODE R int32_t matrix type
GxB_SPARSITY_CONTROL R/W int32_t See Section 10.10.4
GxB_SPARSITY_STATUS R int32_t See Section 10.10.4
GxB_IS_READONLY R int32_t true if it has any read-only com-

ponents
GxB_WILL_WAIT R int32_t will GrB_wait do anything (Sec-

tion 10.10.6)
GxB_ISO R/W int32_t iso status (Section 10.10.5)
GxB_ROWINDEX_INTEGER_BITS R int32_t number of bits for row indices (32

or 64)
GxB_COLINDEX_INTEGER_BITS R int32_t number of bits for column indices

(32 or 64)
GxB_OFFSET_INTEGER_BITS R int32_t number of bits for offsets (32 or

64)
GxB_ROWINDEX_INTEGER_HINT R/W int32_t hint for row indices (0, 32, 64)
GxB_COLINDEX_INTEGER_HINT R/W int32_t hint for column indices (0, 32, 64)
GxB_OFFSET_INTEGER_HINT R/W int32_t hint for offsets (0, 32, 64)

GrB_NAME R/W char * name of the matrix. This can be
set any number of times.

GrB_EL_TYPE_STRING R char * name of the type of the matrix.
GxB_JIT_C_NAME R char * JIT C name of the type of the ma-

trix.

GxB_HYPER_SWITCH R/W double See Section 10.10.2
GxB_BITMAP_SWITCH R/W double See Section 10.10.3

202

10.10.1 Storing a matrix by row or by column

The GraphBLAS GrB_Matrix is entirely opaque to the user application, and
the GraphBLAS API does not specify how the matrix should be stored.
However, choices made in how the matrix is represented in a particular im-
plementation, such as SuiteSparse:GraphBLAS, can have a large impact on
performance.

Many graph algorithms are just as fast in any format, but some algorithms
are much faster in one format or the other. For example, suppose the user ap-
plication stores a directed graph as a matrix A, with the edge (i, j) represented
as the value A(i,j), and the application makes many accesses to the ith
row of the matrix, with GrB_Col_extract (w,...,A,GrB_ALL,...,i,desc)

with the transposed descriptor (GrB_INP0 set to GrB_TRAN). If the matrix
is stored by column this can be extremely slow, just like the expression
w=A(i,:) in MATLAB, where i is a scalar. Since this is a typical use-
case in graph algorithms, the default format in SuiteSparse:GraphBLAS is
to store its matrices by row, in Compressed Sparse Row format (CSR).

MATLAB stores its sparse matrices by column, in “non-hypersparse”
format, in what is called the Compressed Sparse Column format, or CSC for
short. An m-by-n matrix in MATLAB is represented as a set of n column
vectors, each with a sorted list of row indices and values of the nonzero
entries in that column. As a result, w=A(:,j) is very fast in MATLAB, since
the result is already held in the data structure a single list, the jth column
vector. However, w=A(i,:) is very slow in MATLAB, since every column in
the matrix has to be searched to see if it contains row i. In MATLAB, if
many such accesses are made, it is much better to transpose the matrix (say
AT=A’) and then use w=AT(:,i) instead. This can have a dramatic impact
on the performance of MATLAB.

Likewise, if u is a very sparse column vector and A is stored by column,
then w=u’*A (via GrB_vxm) is slower than w=A*u (via GrB_mxv). The opposite
is true if the matrix is stored by row.

SuiteSparse:GraphBLAS stores its matrices by row, by default (with one
exception described below). However, it can also be instructed to store any
selected matrices, or all matrices, by column instead (just like MATLAB),
so that w=A(:,j) (via GrB_Col_extract) is very fast. The change in data
format has no effect on the result, just the time and memory usage. To use
a column-oriented format by default, the following can be done in a user
application that tends to access its matrices by column.

203

GrB_init (...) ;

// just after GrB_init: do the following:

GrB_set (GrB_GLOBAL, GrB_COLMAJOR, GrB_STORAGE_ORIENTATION_HINT) ;

If this is done, and no other GrB_set calls are made with
GrB_STORAGE_ORIENATION_HINT, all matrices will be stored by column. The
default format is GrB_ROWMAJOR.

All vectors (GrB_Vector) are held by column, and this cannot be changed.
By default, matrices of size m-by-1 are held by column, regardless of the

global setting described above. Matrices of size 1-by-n with n not equal to
1 are held by row, regardless of the global setting. The global setting only
affects matrices with both m > 1 and n > 1. Empty matrices (0-by-0) are
also controlled by the global setting.

After creating a matrix with GrB_Matrix_new (&A, ...), its format can
be changed arbitrarily with:

GrB_set (A, GrB_COLMAJOR, GrB_STORAGE_ORIENTATION_HINT) ;

GrB_set (A, GrB_ROWMAJOR, GrB_STORAGE_ORIENTATION_HINT) ;

If set to other values (GrB_BOTH or GrB_UNKNOWN), the format is changed
to GrB_ROWMAJOR.

With this setting, even an m-by-1 matrix can then be changed to be held
by row, for example. Likewise, once a 1-by-n matrix is created, it can be
converted to column-oriented format.

10.10.2 Hypersparse matrices

MATLAB can store an m-by-n matrix with a very large value of m, since a
CSC data structure takes O(n + |A|) memory, independent of m, where |A|
is the number of nonzeros in the matrix. It cannot store a matrix with a
huge n, and this structure is also inefficient when |A| is much smaller than
n. In contrast, SuiteSparse:GraphBLAS can store its matrices in hypersparse
format, taking only O(|A|) memory, independent of how it is stored (by row
or by column) and independent of both m and n [BG08, BG12].

In both the CSR and CSC formats, the matrix is held as a set of sparse
vectors. In non-hypersparse format, the set of sparse vectors is itself dense; all
vectors are present, even if they are empty. For example, an m-by-n matrix in
non-hypersparse CSC format contains n sparse vectors. Each column vector
takes at least one integer to represent, even for a column with no entries. This

204

allows for quick lookup for a particular vector, but the memory required is
O(n+|A|). With a hypersparse CSC format, the set of vectors itself is sparse,
and columns with no entries take no memory at all. The drawback of the
hypersparse format is that finding an arbitrary column vector j, such as for
the computation C=A(:,j), takes O(log k) time if there k ≤ n vectors in the
data structure. One advantage of the hypersparse structure is the memory
required for an m-by-n hypersparse CSC matrix is only O(|A|), independent
of m and n. Algorithms that must visit all non-empty columns of a matrix are
much faster when working with hypersparse matrices, since empty columns
can be skipped.

The hyper_switch parameter controls the hypersparsity of the internal
data structure for a matrix. The parameter is typically in the range 0 to
1. The default is hyper_switch = GxB_HYPER_DEFAULT, which is an extern

const double value, currently set to 0.0625, or 1/16. This default ratio may
change in the future.

The hyper_switch determines how the matrix is converted between the
hypersparse and non-hypersparse formats. Let n be the number of columns
of a CSC matrix, or the number of rows of a CSR matrix. The matrix can
have at most n non-empty vectors.

Let k be the actual number of non-empty vectors. That is, for the CSC
format, k ≤ n is the number of columns that have at least one entry. Let h
be the value of hyper_switch.

If a matrix is currently hypersparse, it can be converted to non-hypersparse
if the either condition n ≤ 1 or k > 2nh holds, or both. Otherwise, it
stays hypersparse. Note that if n ≤ 1 the matrix is always stored as non-
hypersparse.

If currently non-hypersparse, it can be converted to hypersparse if both
conditions n > 1 and k ≤ nh hold. Otherwise, it stays non-hypersparse.
Note that if n ≤ 1 the matrix always remains non-hypersparse.

The default value of hyper_switch is assigned at startup by GrB_init,
and can then be modified globally with GrB_set. All new matrices are cre-
ated with the same hyper_switch, determined by the global value. Once
a particular matrix A has been constructed, its hypersparsity ratio can be
modified from the default with:

double hyper_switch = 0.2 ;

GrB_set (A, hyper_switch, GxB_HYPER_SWITCH) ;

To force a matrix to always be non-hypersparse, use hyper_switch equal

205

to GxB_NEVER_HYPER. To force a matrix to always stay hypersparse, set
hyper_switch to GxB_ALWAYS_HYPER.

A GrB_Matrix can thus be held in one of four formats: any combination of
hyper/non-hyper and CSR/CSC. All GrB_Vector objects are always stored
in non-hypersparse CSC format.

A new matrix created via GrB_Matrix_new starts with k = 0 and is cre-
ated in hypersparse form by default unless n ≤ 1 or if h < 0, where h is the
global hyper_switch value. The matrix is created in either GrB_ROWMAJOR or
GrB_COLMAJOR format, as determined by the last call to GrB_set(GrB_GLOBAL,
..., GrB_STORAGE_ORIENTATION_HINT,...) or GrB_init.

A new matrix C created via GrB_dup (&C,A) inherits the CSR/CSC for-
mat, hypersparsity format, and hyper_switch from A.

10.10.3 Bitmap matrices

By default, SuiteSparse:GraphBLAS switches between all four formats (hy-
persparse, sparse, bitmap, and full) automatically. Let d = |A|/mn for an
m-by-n matrix A with |A| entries. If the matrix is currently in sparse or
hypersparse format, and is modified so that d exceeds a given threshold, it
is converted into bitmap format. The default threshold is controlled by the
GxB_BITMAP_SWITCH setting, which can be set globally, or for a particular
matrix or vector.

The default value of the switch to bitmap format depends on min(m,n),
for a matrix of size m-by-n. For the global setting, the bitmap switch is a
double array of size GxB_NBITMAP_SWITCH. The defaults are given below:

parameter default matrix sizes

bitmap_switch [0] 0.04 min(m,n) = 1 (and all vectors)
bitmap_switch [1] 0.05 min(m,n) = 2
bitmap_switch [2] 0.06 min(m,n) = 3 to 4
bitmap_switch [3] 0.08 min(m,n) = 5 to 8
bitmap_switch [4] 0.10 min(m,n) = 9 to 16
bitmap_switch [5] 0.20 min(m,n) = 17 to 32
bitmap_switch [6] 0.30 min(m,n) = 33 to 64
bitmap_switch [7] 0.40 min(m,n) > 64

That is, by default a GrB_Vector is held in bitmap format if its density
exceeds 4%. To change the global settings, do the following:

206

double bswitch [GxB_NBITMAP_SWITCH] = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 } ;

GrB_set (GrB_GLOBAL, (void *) bswitch, GxB_BITMAP_SWITCH,

GxB_NBITMAP_SWITCH * sizeof (double)) ;

If the matrix is currently in bitmap format, it is converted to full if all
entries are present, or to sparse/hypersparse if d drops below b/2, if its bitmap
switch is b. A matrix or vector with d between b/2 and b remains in its current
format.

10.10.4 Sparsity status

The sparsity status of a matrix can be queried with the following, which
returns a value of GxB_HYPERSPARSE (1), GxB_SPARSE (2), GxB_BITMAP (4),
or GxB_FULL (8).

int32_t sparsity ;

GrB_get (A, &sparsity, GxB_SPARSITY_STATUS) ;

The sparsity format of a matrix can be controlled with the field set to
GxB_SPARSITY_CONTROL, for which the value can be any mix (a sum or bit-
wise or) of GxB_HYPERSPARSE, GxB_SPARSE, GxB_BITMAP, and GxB_FULL. By
default, a matrix or vector can be held in any format, with the default setting
GxB_AUTO_SPARSITY, which is equal to GxB_HYPERSPARSE + GxB_SPARSE +
GxB_BITMAP+ GxB_FULL (15). To enable a matrix to take on just GxB_SPARSE
or GxB_FULL formats, but not GxB_HYPERSPARSE or GxB_BITMAP, for example,
use the following:

GrB_set (A, GxB_SPARSE + GxB_FULL, GxB_SPARSITY_CONTROL) ;

In this case, SuiteSparse:GraphBLAS will hold the matrix in sparse for-
mat (CSR or CSC, depending on its GrB_STORAGE_ORIENTATION_HINT), unless
all entries are present, in which case it will be converted to full format.

Only the least significant 4 bits of the sparsity control are considered, so
the formats can be bitwise negated. For example, to allow for any format
except full:

GrB_set (A, ~GxB_FULL, GxB_SPARSITY_CONTROL) ;

207

10.10.5 iso status

The GxB_ISO option allows the iso status of a matrix or vector to be queried.
The option can be set, as well. If set true, this asks GraphBLAS to attempt
to revise the storage of the matrix to make it iso-valued. GraphBLAS will
check all the values, and if they are all the same, the matrix is converted to
an iso-valued format. If set false, the matrix is revised so that it is held in a
non-iso format, if it is stored in iso-valued form.

10.10.6 wait status

The GxB_WILL_WAIT option can be queried with GrB_get to determine if a
call to GrB_wait on the matrix, vector, or scalar will do any work.

208

10.11 GrB Vector Options

GrB_Info GrB_get (GrB_Vector v, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_Vector v, char * value, int f) ;

GrB_Info GrB_get (GrB_Vector v, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_Vector v, size_t * value, int f) ;

GrB_Info GrB_set (GrB_Vector v, GrB_Scalar value, int f) ;

GrB_Info GrB_set (GrB_Vector v, char * value, int f) ;

GrB_Info GrB_set (GrB_Vector v, int32_t value, int f) ;

int field R/W C type description

GrB_EL_TYPE_CODE R int32_t vector type
GxB_SPARSITY_CONTROL R/W int32_t See Section 10.10.4
GxB_SPARSITY_STATUS R int32_t See Section 10.10.4
GxB_IS_READONLY R int32_t true if it has any read-only components
GxB_WILL_WAIT R int32_t will GrB_wait do anything (Section 10.10.6)
GxB_ISO R/W int32_t iso status (Section 10.10.5)
GxB_ROWINDEX_INTEGER_BITS R int32_t number of bits for row indices (32 or 64)
GxB_COLINDEX_INTEGER_BITS R int32_t number of bits for column indices (32 or 64)
GxB_OFFSET_INTEGER_BITS R int32_t number of bits for offsets (32 or 64)
GxB_ROWINDEX_INTEGER_HINT R/W int32_t hint for row indices (0, 32, 64)
GxB_COLINDEX_INTEGER_HINT R/W int32_t hint for column indices (0, 32, 64)
GxB_OFFSET_INTEGER_HINT R/W int32_t hint for offsets (0, 32, 64)

GrB_NAME R/W char * name of the vector.
GrB_EL_TYPE_STRING R char * name of the type of the vector.
GxB_JIT_C_NAME R char * JIT C name of the type of the vector.

GxB_BITMAP_SWITCH R/W double See Section 10.10.3

See Section 10.10; a GrB_Vector is treated as if it were an n-by-1 matrix,
and is always in column major form. It is never hypersparse.

209

10.12 GrB Scalar Options

GrB_Info GrB_get (GrB_Scalar s, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_Scalar s, char * value, int f) ;

GrB_Info GrB_get (GrB_Scalar s, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_Scalar s, size_t * value, int f) ;

GrB_Info GrB_set (GrB_Scalar s, GrB_Scalar value, int f) ;

GrB_Info GrB_set (GrB_Scalar s, char * value, int f) ;

GrB_Info GrB_set (GrB_Scalar s, int32_t value, int f) ;

int field R/W C type description

GrB_EL_TYPE_CODE R int32_t scalar type
GxB_SPARSITY_STATUS R int32_t See Section 10.10.4
GxB_IS_READONLY R int32_t true if it has any read-only components
GxB_WILL_WAIT R int32_t will GrB_wait do anything (Section 10.10.6)
GxB_ISO R/W int32_t iso status (Section 10.10.5)

GrB_NAME R/W char * name of the scalar.
GrB_EL_TYPE_STRING R char * name of the type of the scalar.
GxB_JIT_C_NAME R char * JIT C name of the type of the scalar.

See Section 10.10; a GrB_Scalar is treated as if it were a 1-by-1 matrix,
and is always in column major form. It is never hypersparse.

10.13 Controlling the sizes of integers

Different integers are used for different parts of the matrix/vector/scalar
data structure. The decision as to which integers to use is determined by
the dimensions and number of entries in the matrix. The decisions can also
be modified by GrB_set and queried by GrB_get. A matrix can have up to
three different kinds of integers. If a matrix is m-by-n with e entries, with
default settings:

� if m > 231: 64-bit integers must be used for the row indices of a matrix;
otherwise, 32-bit integers may be used.

� if n > 231: 64-bit integers must be used for the column indices of a
matrix; otherwise, 32-bit integers may be used.

� if e > 232: 64-bit integers must be used for the row/column offsets of a
matrix; otherwise 32-bit integers may be used.

210

This gives up to 8 different matrix types when the matrix is hypersparse.
Sparse matrices use just two of these integer types (a sparse CSR matrix,
held by row, does not store any row indices). example, if a matrix held in
sparse CSR format (GxB_SPARSE), of size m-by-n with e entries, then the
value of m does not affect the integers used to store the matrix. Bitmap and
full matrices use no arrays of integers at all, and are not affected by these
settings. For

These decisions can be revised on a global basis and a per matrix/vector
basis. Three fields can be used for GrB_get and GrB_get, for the GrB_GLOBAL,
GrB_Matrix, GrB_Vector, and GrB_Scalar objects:

� GxB_ROWINDEX_INTEGER_HINT: for the global setting, this can be set
to 32 (the default) or 64. The default (32) means that 32-bit integers
are used if the number of rows of a matrix or length of a vector is not
too large (> 231), and 64-bit integers are used otherwise. On a per
matrix/vector basis, setting this hint changes the integers used for row
indices in the vector or matrix. The setting of zero is the default for
individual matrices/vectors, which means the global setting is used.

� GxB_COLINDEX_INTEGER_HINT: the same as the row index hint above,
except for column indices. This setting has little effect on a GrB_Vector,
since it is held internally by GraphBLAS as an m-by-1 matrix.

� GxB_OFFSET_INTEGER_HINT: Internally, a sparse or hypersparse matrix
or vector holds an offset array with the cumulative sum of the number
of entries in each row (if held by row) or column (if held by column).
A global setting of 32 is the default, so that 32-bit integers are used if
the matrix has fewer than 232 entries. If this setting is changed to 64,
then 64-bit integers are always used.

Once an object is created, the sizes of its three integers can be queried
by GrB_get with the following fields. Each query returns the result of 32
or 64, as an integer, to denote if 32-bit or 64-bit integers are used for that
component of the matrix/vector. Bitmap and full matrices always return 64.

� GxB_ROWINDEX_INTEGER_BITS: query the number of bits in the row
index integer.

� GxB_COLINDEX_INTEGER_BITS: query the number of bits in the column
index integer.

� GxB_OFFSET_INTEGER_BITS: query the number of bits in the offset in-
teger.

211

10.14 GrB Descriptor Options

GrB_Info GrB_get (GrB_Descriptor desc, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GrB_Descriptor desc, char * value, int f) ;

GrB_Info GrB_get (GrB_Descriptor desc, int32_t * value, int f) ;

GrB_Info GrB_get (GrB_Descriptor desc, size_t * value, int f) ;

GrB_Info GrB_set (GrB_Descriptor desc, GrB_Scalar value, int f) ;

GrB_Info GrB_set (GrB_Descriptor desc, char * value, int f) ;

GrB_Info GrB_set (GrB_Descriptor desc, int32_t value, int f) ;

int field R/W C type description

GrB_OUTP R/W int32_t GrB_DEFAULT or GrB_REPLACE
GrB_MASK R/W int32_t GrB_DEFAULT, GrB_COMP, GrB_STRUCTURE, or

GrB_COMP_STRUCTURE

GrB_INP0 R/W int32_t GrB_DEFAULT or GrB_TRAN
GrB_INP1 R/W int32_t GrB_DEFAULT or GrB_TRAN
GxB_AxB_METHOD R/W int32_t Method used by GrB_mxm (GrB_DEFAULT,

GxB_AxB_GUSTAVSON. GxB_AxB_HASH,
GxB_AxB_SAXPY, or GxB_AxB_DOT).

GxB_SORT R/W int32_t if true, GrB_mxm returns its output in sorted form.
GxB_COMPRESSION R/W int32_t compression method for serialize methods.
GxB_ROWINDEX_LIST R/W int32_t how the GrB_Vector I is intrepretted.
GxB_COLINDEX_LIST R/W int32_t how the GrB_Vector J is intrepretted.
GxB_VALUE_LIST R/W int32_t how GrB_Vector X is intrepretted (for GrB_build

only).

GrB_NAME R/W char * name of the descriptor. This can be set any num-
ber of times for user-defined descriptors. Built-in
descriptors have the same name as the variable
name ("GrB_DESC_T1" for the GrB_DESC_T1 de-
scriptor, for example)

The following table describes each option. See Section 6.16 for more
details.

212

Descriptor Default Non-default
field
GrB_OUTP GrB_DEFAULT: The output matrix is

not cleared. The operation computes
C⟨M⟩ = C⊙T.

GrB_REPLACE: After computing
Z = C⊙T, the output C is cleared
of all entries. Then C⟨M⟩ = Z is
performed.

GrB_MASK GrB_DEFAULT: The Mask is not comple-
mented. Mask(i,j)=1 means the value
Cij can be modified by the operation,
while Mask(i,j)=0 means the value Cij

shall not be modified by the operation.

GrB_COMP: The Mask is comple-
mented. Mask(i,j)=0 means the
value Cij can be modified by the op-
eration, while Mask(i,j)=1 means
the value Cij shall not be modified
by the operation.
GrB_STRUCTURE: The values of the
Mask are ignored. If Mask(i,j) is an
entry in the Maskmatrix, it is treated
as if Mask(i,j)=1. The two options
GrB_COMP and GrB_STRUCTURE can
be combined, with two subsequent
calls, or with a single call with the
setting GrB_COMP+GrB_STRUCTURE.

GrB_INP0 GrB_DEFAULT: The first input is not
transposed prior to using it in the op-
eration.

GrB_TRAN: The first input is trans-
posed prior to using it in the opera-
tion. Only matrices are transposed,
never vectors.

GrB_INP1 GrB_DEFAULT: The second input is not
transposed prior to using it in the oper-
ation.

GrB_TRAN: The second input is trans-
posed prior to using it in the opera-
tion. Only matrices are transposed,
never vectors.

GxB_AxB_METHOD GrB_DEFAULT: The method for C=A*B is
selected automatically.

GxB_AxB_method: The selected
method is used to compute C=A*B.

GxB_SORT GrB_DEFAULT: The computation of
C=A*B may leave C in a jumbled state;
GrB_wait will finalize the matrix.

any nonzero value: C=A*B always re-
turns C in final, sorted form.

GxB_COMPRESSION GrB_DEFAULT: Serialize methods will use
the default method, ZSTD (level 1)

See Section 6.11

GxB_ROWINDEX_LIST GrB_DEFAULT or GxB_USE_VALUES: use
the values of I

GxB_USE_INDICES: use the indices of
I; GxB_IS_STRIDE: I is a strided
range (lo:inc:hi)

GxB_COLINDEX_LIST GrB_DEFAULT or GxB_USE_VALUES: use
the values of J

GxB_USE_INDICES: use the indices of
J; GxB_IS_STRIDE: J is a strided
range (lo:inc:hi)

GxB_VALUE_LIST GrB_DEFAULT or GxB_USE_VALUES: use
the values of X

GxB_USE_INDICES: use the indices

213

10.15 GxB Context Options

GrB_Info GrB_get (GxB_Context Context, GrB_Scalar value, int f) ;

GrB_Info GrB_get (GxB_Context Context, char * value, int f) ;

GrB_Info GrB_get (GxB_Context Context, int32_t * value, int f) ;

GrB_Info GrB_get (GxB_Context Context, size_t * value, int f) ;

GrB_Info GrB_set (GxB_Context Context, GrB_Scalar value, int f) ;

GrB_Info GrB_set (GxB_Context Context, char * value, int f) ;

GrB_Info GrB_set (GxB_Context Context, int32_t value, int f) ;

int field R/W C type description

GxB_NTHREADS R/W int32_t number of OpenMP threads to use; See Section 10.2.2
GxB_CHUNK R/W double chunk factor for task creation; See Section 10.2.2

GrB_NAME R/W char * name of the context. This can be set any num-
ber of times for user-defined contexts. Built-in con-
texts have the same name as the variable name
("GxB_CONTEXT_WORLD" for the GxB_CONTEXT_WORLD

context, for example)

NOTE: the non-polymorphic names for this method are GxB_Context_get_[KIND]
and GxB_Context_set_[KIND], where KIND can be: Scalar (for GrB_Scalar),
String (for char *), INT (for int32_t), and SIZE (for size_t * for GrB_get
only), and VOID (for void *). The non-polymorphic suffix of INT is used here
instead of INT32 because GxB_Context_*_INT32 appear as historical meth-
ods in version v8.0 and earlier, which are now deprecated.

For the int32_t type, the use of the polymorphic GrB_set and GrB_get

accesses the correct version of this method. When using non-polymorphic
methods, the use of GxB_Context_get_INT and GxB_Context_set_INT is
recommended.

214

10.16 Options for inspecting a serialized blob

GrB_Info GrB_get (const void *blob, GrB_Scalar value, int f, size_t blobsize) ;

GrB_Info GrB_get (const void *blob, char * value, int f, size_t blobsize) ;

GrB_Info GrB_get (const void *blob, int32_t * value, int f, size_t blobsize) ;

GrB_Info GrB_get (const void *blob, size_t * value, int f, size_t blobsize) ;

int field R/W C type description

GrB_STORAGE_ORIENTATION_HINT R int32_t See GrB_Orientation,
and Section 10.10.1.

GrB_EL_TYPE_CODE R int32_t type of matrix in the blob
GxB_SPARSITY_CONTROL R int32_t See Section 10.10.4
GxB_SPARSITY_STATUS R int32_t See Section 10.10.4
GxB_ISO R int32_t iso status (Section 10.10.5)
GxB_ROWINDEX_INTEGER_BITS R int32_t number of bits for row indices (32

or 64)
GxB_COLINDEX_INTEGER_BITS R int32_t number of bits for column indices

(32 or 64)
GxB_OFFSET_INTEGER_BITS R int32_t number of bits for offsets (32 or

64)
GxB_ROWINDEX_INTEGER_HINT R int32_t hint for row indices (0, 32, 64)
GxB_COLINDEX_INTEGER_HINT R int32_t hint for column indices (0, 32, 64)
GxB_OFFSET_INTEGER_HINT R int32_t hint for offsets (0, 32, 64)

GrB_NAME R char * name of the matrix in the blob.
GrB_EL_TYPE_STRING R char * name of the type of the matrix in

the blob.
GxB_JIT_C_NAME R char * JIT C name of the type of the ma-

trix in the blob.

GxB_HYPER_SWITCH R double See Section 10.10.2
GxB_BITMAP_SWITCH R double See Section 10.10.3

The GrB_Matrix_serialize and GxB_Matrix_serialize methods cre-
ate a blob as a single array of bytes that contains all content of a GrB_Matrix.
These GrB_get methods can query a blob for the same values that can be
queried for a GrB_Matrix. The blob cannot be modified by GrB_set.

Note that these GrB_get methods add a fourth parameter, the size of the
blob. All other GrB_get methods have just three parameters: the object, the
value, and the field.

215

11 SuiteSparse:GraphBLAS Colon and Index

Notation

MATLAB/Octave uses a colon notation to index into matrices, such as
C=A(2:4,3:8), which extracts C as 3-by-6 submatrix from A, from rows 2
through 4 and columns 3 to 8 of the matrix A. A single colon is used to
denote all rows, C=A(:,9), or all columns, C=A(12,:), which refers to the
9th column and 12th row of A, respectively. An arbitrary integer list can be
given as well, such as the MATLAB/Octave statements:

I = [2 1 4] ;

J = [3 5] ;

C = A (I,J) ;

which creates the 3-by-2 matrix C as follows:

C =

 a2,3 a2,5
a1,3 a1,5
a4,3 a4,5


The GraphBLAS API can do the equivalent of C=A(I,J), C=A(:,J),

C=A(I,:), and C=A(:,:), by passing a parameter const GrB_Index *I as
either an array of size ni, or as the special value GrB_ALL, which corresponds
to the stand-alone colon C=A(:,J), and the same can be done for J.. To
compute C=A(2:4,3:8) in GraphBLAS requires the user application to cre-
ate two explicit integer arrays I and J of size 3 and 5, respectively, and then
fill them with the explicit values [2,3,4] and [3,4,5,6,7,8]. This works
well if the lists are small, or if the matrix has more entries than rows or
columns.

However, particularly with hypersparse matrices, the size of the explicit
arrays I and J can vastly exceed the number of entries in the matrix. When
using its hypersparse format, SuiteSparse:GraphBLAS allows the user appli-
cation to create a GrB_Matrix with dimensions up to 260, with no memory
constraints. The only constraint on memory usage in a hypersparse matrix
is the number of entries in the matrix.

For example, creating a n-by-n matrix A of type GrB_FP64 with n = 260

and one million entries is trivial to do in Version 2.1 (and later) of Suite-
Sparse:GraphBLAS, taking at most 24MB of space. SuiteSparse:GraphBLAS

216

Version 2.1 (or later) could do this on an old smartphone. However, us-
ing just the pure GraphBLAS API, constructing C=A(0:(n/2),0:(n/2)) in
SuiteSparse Version 2.0 would require the creation of an integer array I of
size 259, containing the sequence 0, 1, 2, 3,, requiring about 4 ExaBytes
of memory (4 million terabytes). This is roughly 1000 times larger than the
memory size of the world’s largest computer in 2018.

SuiteSparse:GraphBLAS Version 2.1 and later extends the GraphBLAS
API with a full implementation of the MATLAB colon notation for inte-
gers, I=begin:inc:end. This extension allows the construction of the ma-
trix C=A(0:(n/2),0:(n/2)) in this example, with dimension 259, probably
taking just milliseconds on an old smartphone.

The GrB_extract, GrB_assign, and GxB_subassign operations (described
in the Section 12) each have parameters that define a list of integer indices,
using two parameters:

const GrB_Index *I ; // an array, or a special value GrB_ALL

GrB_Index ni ; // the size of I, or a special value

These two parameters define five kinds of index lists, which can be used
to specify either an explicit or implicit list of row indices and/or column
indices. The length of the list of indices is denoted |I|. This discussion
applies equally to the row indices I and the column indices J. The five kinds
are listed below.

1. An explicit list of indices, such as I = [2 1 4 7 2] in MATLAB no-
tation, is handled by passing in I as a pointer to an array of size
5, and passing ni=5 as the size of the list. The length of the ex-
plicit list is ni=|I|. Duplicates may appear, except that for some
uses of GrB_assign and GxB_subassign, duplicates lead to undefined
behavior according to the GraphBLAS C API Specification. Suite-
Sparse:GraphBLAS specifies how duplicates are handled in all cases,
as an addition to the specification. See Section 12.10 for details.

2. To specify all rows of a matrix, use I = GrB_ALL. The parameter ni is
ignored. This is equivalent to C=A(:,J) in MATLAB. In GraphBLAS,
this is the sequence 0:(m-1) if A has m rows, with length |I|=m. If J
is used the columns of an m-by-n matrix, then J=GrB_ALL refers to all
columns, and is the sequence 0:(n-1), of length |J|=n.

217

SPEC: If I or J are GrB_ALL, the specification requires that ni

be passed in as m (the number of rows) and nj be passed in as
n. Any other value is an error. SuiteSparse:GraphBLAS ignores
these scalar inputs and treats them as if they are equal to their
only possible correct value.

3. To specify a contiguous range of indices, such as I=10:20 in MATLAB,
the array I has size 2, and ni is passed to SuiteSparse:GraphBLAS as
the special value ni = GxB_RANGE. The beginning index is I[GxB_BEGIN]
and the ending index is I[GxB_END]. Both values must be non-negative
since GrB_Index is an unsigned integer (uint64_t). The value of
I[GxB_INC] is ignored.

// to specify I = 10:20

GrB_Index I [2], ni = GxB_RANGE ;

I [GxB_BEGIN] = 10 ; // the start of the sequence

I [GxB_END] = 20 ; // the end of the sequence

Let b = I[GxB_BEGIN], let e = I[GxB_END], The sequence has length
zero if b > e; otherwise the length is |I| = (e− b) + 1.

4. To specify a strided range of indices with a non-negative stride, such
as I=3:2:10, the array I has size 3, and ni has the special value
GxB_STRIDE. This is the sequence 3, 5, 7, 9, of length 4. Note that
10 does not appear in the list. The end point need not appear if the
increment goes past it.

// to specify I = 3:2:10

GrB_Index I [3], ni = GxB_STRIDE ;

I [GxB_BEGIN] = 3 ; // the start of the sequence

I [GxB_INC] = 2 ; // the increment

I [GxB_END] = 10 ; // the end of the sequence

The GxB_STRIDE sequence is the same as the List generated by the
following for loop:

int64_t k = 0 ;

GrB_Index *List = (a pointer to an array of large enough size)

for (int64_t i = I [GxB_BEGIN] ; i <= I [GxB_END] ; i += I [GxB_INC])

{

// i is the kth entry in the sequence

List [k++] = i ;

}

218

Then passing the explicit array List and its length ni=k has the same
effect as passing in the array I of size 3, with ni=GxB_STRIDE. The
latter is simply much faster to produce, and much more efficient for
SuiteSparse:GraphBLAS to process.

Let b = I[GxB_BEGIN], let e = I[GxB_END], and let ∆ = I[GxB_INC].
The sequence has length zero if b > e or ∆ = 0. Otherwise, the length
of the sequence is

|I| =
⌊e− b

∆

⌋
+ 1

5. In MATLAB notation, if the stride is negative, the sequence is decreas-
ing. For example, 10:-2:1 is the sequence 10, 8, 6, 4, 2, in that order.
In SuiteSparse:GraphBLAS, use ni = GxB_BACKWARDS, with an array
I of size 3. The following example specifies defines the equivalent of
the MATLAB expression 10:-2:1 in SuiteSparse:GraphBLAS:

// to specify I = 10:-2:1

GrB_Index I [3], ni = GxB_BACKWARDS ;

I [GxB_BEGIN] = 10 ; // the start of the sequence

I [GxB_INC] = 2 ; // the magnitude of the increment

I [GxB_END] = 1 ; // the end of the sequence

The value -2 cannot be assigned to the GrB_Index array I, since that
is an unsigned type. The signed increment is represented instead with
the special value ni = GxB_BACKWARDS. The GxB_BACKWARDS sequence
is the same as generated by the following for loop:

int64_t k = 0 ;

GrB_Index *List = (a pointer to an array of large enough size)

for (int64_t i = I [GxB_BEGIN] ; i >= I [GxB_END] ; i -= I [GxB_INC])

{

// i is the kth entry in the sequence

List [k++] = i ;

}

Let b = I[GxB_BEGIN], let e = I[GxB_END], and let ∆ = I[GxB_INC]

(note that ∆ is not negative). The sequence has length zero if b < e or
∆ = 0. Otherwise, the length of the sequence is

|I| =
⌊b− e

∆

⌋
+ 1

219

Since GrB_Index is an unsigned integer, all three values I[GxB_BEGIN],
I[GxB_INC], and I[GxB_END] must be non-negative.

Just as in MATLAB, it is valid to specify an empty sequence of length
zero. For example, I = 5:3 has length zero in MATLAB and the same is true
for a GxB_RANGE sequence in SuiteSparse:GraphBLAS, with I[GxB_BEGIN]=5

and I[GxB_END]=3. This has the same effect as array I with ni=0.

220

12 GraphBLAS Operations

The next sections define each of the GraphBLAS operations, also listed in
the table below.

GrB_mxm matrix-matrix multiply C⟨M⟩ = C⊙AB
GrB_vxm vector-matrix multiply wT⟨mT⟩ = wT ⊙ uTA
GrB_mxv matrix-vector multiply w⟨m⟩ = w ⊙Au

GrB_eWiseMult element-wise, C⟨M⟩ = C⊙ (A⊗B)
set intersection w⟨m⟩ = w ⊙ (u⊗ v)

GrB_eWiseAdd element-wise, C⟨M⟩ = C⊙ (A⊕B)
set union w⟨m⟩ = w ⊙ (u⊕ v)

GxB_eWiseUnion element-wise, C⟨M⟩ = C⊙ (A⊕B)
set union w⟨m⟩ = w ⊙ (u⊕ v)

GrB_extract extract submatrix C⟨M⟩ = C⊙A(I,J)
w⟨m⟩ = w ⊙ u(i)

GrB_assign assign submatrix C⟨M⟩(I,J) = C(I,J)⊙A
with submask for C w⟨m⟩(i) = w(i)⊙ u

GxB_subassign assign submatrix, C(I,J)⟨M⟩ = C(I,J)⊙A
with submask for C(I,J) w(i)⟨m⟩ = w(i)⊙ u

GrB_apply apply unary operator C⟨M⟩ = C⊙f(A)
w⟨m⟩ = w⊙f(u)

apply binary operator C⟨M⟩ = C⊙f(x,A)
C⟨M⟩ = C⊙f(A, y)
w⟨m⟩ = w⊙f(x,x)
w⟨m⟩ = w⊙f(u, y)

apply index-unary op C⟨M⟩ = C⊙f(A, i, j, k)
w⟨m⟩ = w⊙f(u, i, 0, k)

GrB_select select entries C⟨M⟩ = C⊙select(A, i, j, k)
w⟨m⟩ = w⊙select(u, i, 0, k)

GrB_reduce reduce to vector w⟨m⟩ = w⊙[⊕jA(:, j)]
reduce to scalar s = s⊙ [⊕ijA(I, J)]

GrB_transpose transpose C⟨M⟩ = C⊙AT

GrB_kronecker Kronecker product C⟨M⟩ = C⊙ kron(A,B)

If an error occurs, GrB_error(&err,C) or GrB_error(&err,w) returns
details about the error, for operations that return a modified matrix C or
vector w. The only operation that cannot return an error string is reduction
to a C scalar with GrB_reduce.

221

12.1 GrB mxm: matrix-matrix multiply

GrB_Info GrB_mxm // C<Mask> = accum (C, A*B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for A*B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_mxm multiplies two sparse matrices A and B using the semiring. The
input matrices A and B may be transposed according to the descriptor, desc
(which may be NULL) and then typecasted to match the multiply operator of
the semiring. Next, T=A*B is computed on the semiring, precisely defined in
the GB_spec_mxm.m script in GraphBLAS/Test. The actual algorithm exploits
sparsity and does not take O(n3) time, but it computes the following:

[m s] = size (A.matrix) ;

[s n] = size (B.matrix) ;

T.matrix = zeros (m, n, multiply.ztype) ;

T.pattern = zeros (m, n, ’logical’) ;

T.matrix (:,:) = identity ; % the identity of the semiring’s monoid

T.class = multiply.ztype ; % the ztype of the semiring’s multiply op

A = cast (A.matrix, multiply.xtype) ; % the xtype of the semiring’s multiply op

B = cast (B.matrix, multiply.ytype) ; % the ytype of the semiring’s multiply op

for j = 1:n

for i = 1:m

for k = 1:s

% T (i,j) += A (i,k) * B (k,j), using the semiring

if (A.pattern (i,k) && B.pattern (k,j))

z = multiply (A (i,k), B (k,j)) ;

T.matrix (i,j) = add (T.matrix (i,j), z) ;

T.pattern (i,j) = true ;

end

end

end

end

Finally, T is typecasted into the type of C, and the results are written back
into C via the accum and Mask, C⟨M⟩ = C⊙T. The latter step is reflected
in the MATLAB function GB_spec_accum_mask.m, discussed in Section 2.3.

222

Performance considerations: Suppose all matrices are in GrB_COLMAJOR

format, and B is extremely sparse but A is not as sparse. Then computing
C=A*B is very fast, and much faster than when A is extremely sparse. For
example, if A is square and B is a column vector that is all nonzero except for
one entry B(j,0)=1, then C=A*B is the same as extracting column A(:,j).
This is very fast if A is stored by column but slow if A is stored by row. If
A is a sparse row with a single entry A(0,i)=1, then C=A*B is the same as
extracting row B(i,:). This is fast if B is stored by row but slow if B is
stored by column.

If the user application needs to repeatedly extract rows and columns from
a matrix, whether by matrix multiplication or by GrB_extract, then keep
two copies: one stored by row, and other by column, and use the copy that
results in the fastest computation.

By default, GrB_mxm, GrB_mxv, GrB_vxm, and GrB_reduce (to vector) can
return their result in a jumbled state, with the sort left pending. It can
sometimes be faster for these methods to do the sort as they compute their
result. Use the GxB_SORT descriptor setting to select this option. Refer to
Section 6.16 for details.

223

12.2 GrB vxm: vector-matrix multiply

GrB_Info GrB_vxm // w’<mask> = accum (w, u’*A)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for u’*A

const GrB_Vector u, // first input: vector u

const GrB_Matrix A, // second input: matrix A

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_vxm multiplies a row vector u’ times a matrix A. The matrix A may
be first transposed according to desc (as the second input, GrB_INP1); the
column vector u is never transposed via the descriptor. The inputs u and
A are typecasted to match the xtype and ytype inputs, respectively, of the
multiply operator of the semiring. Next, an intermediate column vector
t=A’*u is computed on the semiring using the same method as GrB_mxm.
Finally, the column vector t is typecasted from the ztype of the multiply
operator of the semiring into the type of w, and the results are written back
into w using the optional accumulator accum and mask.

The last step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

Performance considerations: If the GrB_STORAGE_ORIENTATION_HINT

of A is GrB_ROWMAJOR, and the default descriptor is used (A is not transposed),
then GrB_vxm is faster than than GrB_mxv with its default descriptor, when
the vector u is very sparse. However, if the GrB_STORAGE_ORIENTATION_HINT
of A is GrB_COLMAJOR, then GrB_mxv with its default descriptor is faster than
GrB_vxm with its default descriptor, when the vector u is very sparse. Us-
ing the non-default GrB_TRAN descriptor for A makes the GrB_vxm operation
equivalent to GrB_mxv with its default descriptor (with the operands reversed
in the multiplier, as well). The reverse is true as well; GrB_mxv with GrB_TRAN

is the same as GrB_vxm with a default descriptor.

224

12.3 GrB mxv: matrix-vector multiply

GrB_Info GrB_mxv // w<mask> = accum (w, A*u)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Semiring semiring, // defines ’+’ and ’*’ for A*B

const GrB_Matrix A, // first input: matrix A

const GrB_Vector u, // second input: vector u

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_mxvmultiplies a matrix A times a column vector u. The matrix Amay
be first transposed according to desc (as the first input); the column vector
u is never transposed via the descriptor. The inputs A and u are typecasted
to match the xtype and ytype inputs, respectively, of the multiply operator
of the semiring. Next, an intermediate column vector t=A*u is computed on
the semiring using the same method as GrB_mxm. Finally, the column vector
t is typecasted from the ztype of the multiply operator of the semiring into
the type of w, and the results are written back into w using the optional
accumulator accum and mask.

The last step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

Performance considerations: Refer to the discussion of GrB_vxm. In
SuiteSparse:GraphBLAS, GrB_mxv is very efficient when u is sparse or dense,
when the default descriptor is used, and when the matrix is GrB_COLMAJOR.
When u is very sparse and GrB_INP0 is set to its non-default GrB_TRAN, then
this method is not efficient if the matrix is in GrB_COLMAJOR format. If an
application needs to perform A’*u repeatedly where u is very sparse, then
use the GrB_ROWMAJOR format for A instead.

225

12.4 GrB eWiseMult: element-wise operations, set inter-
section

Element-wise “multiplication” is shorthand for applying a binary operator
element-wise on two matrices or vectors A and B, for all entries that appear in
the set intersection of the patterns of A and B. This is like A.*B for two sparse
matrices in MATLAB, except that in GraphBLAS any binary operator can
be used, not just multiplication.

The pattern of the result of the element-wise “multiplication” is exactly
this set intersection. Entries in A but not B, or visa versa, do not appear in
the result.

Let⊗ denote the binary operator to be used. The computationT = A⊗B
is given below. Entries not in the intersection of A and B do not appear in
the pattern of T. That is:

for all entries (i, j) in A ∩B
tij = aij ⊗ bij

Depending on what kind of operator is used and what the implicit value
is assumed to be, this can give the Hadamard product. This is the case for
A.*B in MATLAB since the implicit value is zero. However, computing a
Hadamard product is not necessarily the goal of the eWiseMult operation.
It simply applies any binary operator, built-in or user-defined, to the set
intersection of A and B, and discards any entry outside this intersection.
Its usefulness in a user’s application does not depend upon it computing
a Hadamard product in all cases. The operator need not be associative,
commutative, nor have any particular property except for type compatibility
with A and B, and the output matrix C.

The generic name for this operation is GrB_eWiseMult, which can be used
for both matrices and vectors.

226

12.4.1 GrB Vector eWiseMult: element-wise vector multiply

GrB_Info GrB_eWiseMult // w<mask> = accum (w, u.*v)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const <operator> multiply, // defines ’.*’ for t=u.*v

const GrB_Vector u, // first input: vector u

const GrB_Vector v, // second input: vector v

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_eWiseMult computes the element-wise “multiplication” of
two vectors u and v, element-wise using any binary operator (not just times).
The vectors are not transposed via the descriptor. The vectors u and v are
first typecasted into the first and second inputs of the multiply operator.
Next, a column vector t is computed, denoted t = u⊗ v. The pattern of t
is the set intersection of u and v. The result t has the type of the output
ztype of the multiply operator.

The operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the multiply binary operator. If given
a semiring (GrB_Semiring), the multiply operator of the semiring is used
as the multiply binary operator. The multiply operator may be a binary
operator created by GxB_BinaryOp_new_IndexOp.

The next and final step is w⟨m⟩ = w ⊙ t, as described in Section 2.3,
except that all the terms are column vectors instead of matrices. Note for all
GraphBLAS operations, including this one, the accumulator w ⊙ t is always
applied in a set union manner, even though t = u⊗ v for this operation is
applied in a set intersection manner.

227

12.4.2 GrB Matrix eWiseMult: element-wise matrix multiply

GrB_Info GrB_eWiseMult // C<Mask> = accum (C, A.*B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const <operator> multiply, // defines ’.*’ for T=A.*B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_Matrix_eWiseMult computes the element-wise “multiplication” of
two matrices A and B, element-wise using any binary operator (not just times).
The input matrices may be transposed first, according to the descriptor desc.
They are then typecasted into the first and second inputs of the multiply

operator. Next, a matrix T is computed, denoted T = A⊗B. The pattern
of T is the set intersection of A and B. The result T has the type of the output
ztype of the multiply operator.

The multiply operator is typically a GrB_BinaryOp, but the method is
type-generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the multiply binary operator. If given
a semiring (GrB_Semiring), the multiply operator of the semiring is used
as the multiply binary operator. The multiply operator may be a binary
operator created by GxB_BinaryOp_new_IndexOp.

The operation can be expressed in MATLAB notation as:

[nrows, ncols] = size (A.matrix) ;

T.matrix = zeros (nrows, ncols, multiply.ztype) ;

T.class = multiply.ztype ;

p = A.pattern & B.pattern ;

A = cast (A.matrix (p), multiply.xtype) ;

B = cast (B.matrix (p), multiply.ytype) ;

T.matrix (p) = multiply (A, B) ;

T.pattern = p ;

The final step is C⟨M⟩ = C⊙T, as described in Section 2.3. Note for all
GraphBLAS operations, including this one, the accumulator C⊙T is always
applied in a set union manner, even though T = A⊗B for this operation is
applied in a set intersection manner.

228

12.5 GrB eWiseAdd: element-wise operations, set union

Element-wise “addition” is shorthand for applying a binary operator element-
wise on two matrices or vectors A and B, for all entries that appear in the
set intersection of the patterns of A and B. This is like A+B for two sparse
matrices in MATLAB, except that in GraphBLAS any binary operator can
be used, not just addition. The pattern of the result of the element-wise
“addition” is the set union of the pattern of A and B. Entries in neither in A

nor in B do not appear in the result.
Let⊕ denote the binary operator to be used. The computationT = A⊕B

is exactly the same as the computation with accumulator operator as de-
scribed in Section 2.3. It acts like a sparse matrix addition, except that any
operator can be used. The pattern of A⊕B is the set union of the patterns
of A and B, and the operator is applied only on the set intersection of A and
B. Entries not in either the pattern of A or B do not appear in the pattern
of T. That is:

for all entries (i, j) in A ∩B
tij = aij ⊕ bij

for all entries (i, j) in A \B
tij = aij

for all entries (i, j) in B \A
tij = bij

The only difference between element-wise “multiplication” (T = A⊗B)
and “addition” (T = A⊕B) is the pattern of the result, and what happens
to entries outside the intersection. With ⊗ the pattern of T is the inter-
section; with ⊕ it is the set union. Entries outside the set intersection are
dropped for ⊗, and kept for ⊕; in both cases the operator is only applied to
those (and only those) entries in the intersection. Any binary operator can
be used interchangeably for either operation.

Element-wise operations do not operate on the implicit values, even im-
plicitly, since the operations make no assumption about the semiring. As a
result, the results can be different from MATLAB, which can always assume
the implicit value is zero. For example, C=A-B is the conventional matrix
subtraction in MATLAB. Computing A-B in GraphBLAS with eWiseAdd

will apply the MINUS operator to the intersection, entries in A but not B will
be unchanged and appear in C, and entries in neither A nor B do not appear
in C. For these cases, the results matches the MATLAB C=A-B. Entries in B

but not A do appear in C but they are not negated; they cannot be subtracted

229

from an implicit value in A. This is by design. If conventional matrix sub-
traction of two sparse matrices is required, and the implicit value is known
to be zero, use GrB_apply to negate the values in B, and then use eWiseAdd
with the PLUS operator, to compute A+(-B).

The generic name for this operation is GrB_eWiseAdd, which can be used
for both matrices and vectors.

There is another minor difference in two variants of the element-wise func-
tions. If given a semiring, the eWiseAdd functions use the binary operator of
the semiring’s monoid, while the eWiseMult functions use the multiplicative
operator of the semiring.

12.5.1 GrB Vector eWiseAdd: element-wise vector addition

GrB_Info GrB_eWiseAdd // w<mask> = accum (w, u+v)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const <operator> add, // defines ’+’ for t=u+v

const GrB_Vector u, // first input: vector u

const GrB_Vector v, // second input: vector v

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_eWiseAdd computes the element-wise “addition” of two vec-
tors u and v, element-wise using any binary operator (not just plus). The
vectors are not transposed via the descriptor. Entries in the intersection of u
and v are first typecasted into the first and second inputs of the add operator.
Next, a column vector t is computed, denoted t = u⊕ v. The pattern of t
is the set union of u and v. The result t has the type of the output ztype of
the add operator.

The add operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the add binary operator. If given a semiring
(GrB_Semiring), the additive operator of the monoid of the semiring is used
as the add binary operator. The add operator may be a binary operator
created by GxB_BinaryOp_new_IndexOp.

The final step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

230

12.5.2 GrB Matrix eWiseAdd: element-wise matrix addition

GrB_Info GrB_eWiseAdd // C<Mask> = accum (C, A+B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const <operator> add, // defines ’+’ for T=A+B

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_Matrix_eWiseAdd computes the element-wise “addition” of two ma-
trices A and B, element-wise using any binary operator (not just plus). The
input matrices may be transposed first, according to the descriptor desc.
Entries in the intersection then typecasted into the first and second inputs of
the add operator. Next, a matrix T is computed, denoted T = A⊕B. The
pattern of T is the set union of A and B. The result T has the type of the
output ztype of the add operator.

The add operator is typically a GrB_BinaryOp, but the method is type-
generic for this parameter. If given a monoid (GrB_Monoid), the additive
operator of the monoid is used as the add binary operator. If given a semiring
(GrB_Semiring), the additive operator of the monoid of the semiring is used
as the add binary operator. The add operator may be a binary operator
created by GxB_BinaryOp_new_IndexOp.

The operation can be expressed in MATLAB notation as:

[nrows, ncols] = size (A.matrix) ;

T.matrix = zeros (nrows, ncols, add.ztype) ;

p = A.pattern & B.pattern ;

A = GB_mex_cast (A.matrix (p), add.xtype) ;

B = GB_mex_cast (B.matrix (p), add.ytype) ;

T.matrix (p) = add (A, B) ;

p = A.pattern & ~B.pattern ; T.matrix (p) = cast (A.matrix (p), add.ztype) ;

p = ~A.pattern & B.pattern ; T.matrix (p) = cast (B.matrix (p), add.ztype) ;

T.pattern = A.pattern | B.pattern ;

T.class = add.ztype ;

Except for when typecasting is performed, this is identical to how the
accum operator is applied in Figure 1.

The final step is C⟨M⟩ = C⊙T, as described in Section 2.3.

231

12.6 GxB eWiseUnion: element-wise operations, set union

GxB_eWiseUnion computes a result with the same pattern GrB_eWiseAdd,
namely, a set union of its two inputs. It differs in how the binary operator is
applied.

Let ⊕ denote the binary operator to be used. The operator is applied to
every entry in A and B. A pair of scalars, α and β (alpha and beta in the
API, respectively) define the inputs to the operator when entries are present
in one matrix but not the other.

for all entries (i, j) in A ∩B
tij = aij ⊕ bij

for all entries (i, j) in A \B
tij = aij ⊕ β

for all entries (i, j) in B \A
tij = α⊕ bij

GxB_eWiseUnion is useful in contexts where GrB_eWiseAdd cannot be
used because of the typecasting rules of GraphBLAS. In particular, sup-
pose A and B are matrices with a user-defined type, and suppose < is a
user-defined operator that compares two entries of this type and returns a
Boolean value. Then C=A<B can be computed with GxB_eWiseUnion but not
with GrB_eWiseAdd. In the latter, if A(i,j) is present but B(i,j) is not,
then A(i,j) must typecasted to the type of C (GrB_BOOL in this case), and
the assigment C(i,j) = (bool) A(i,j) would be performed. This is not
possible because user-defined types cannot be typecasted to any other type.

Another advantage of GxB_eWiseUnion is its performance. For example,
the MATLAB/Octave expression C=A-B computes C(i,j)=-B(i,j) when
A(i,j) is not present. This cannot be done with a single call GrB_eWiseAdd,
but it can be done with a single call to GxB_eWiseUnion, with the GrB_MINUS_FP64
operator, and with both alpha and beta scalars equal to zero. It is possi-
ble to compute this result with a temporary matrix, E=-B, computed with
GrB_apply and GrB_AINV_FP64, followed by a call to GrB_eWiseAdd to com-
pute C=A+E, but this is slower than a single call to GxB_eWiseUnion, and uses
more memory.

232

12.6.1 GxB Vector eWiseUnion: element-wise vector addition

GrB_Info GxB_eWiseUnion // w<mask> = accum (w, u+v)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_BinaryOp add, // defines ’+’ for t=u+v

const GrB_Vector u, // first input: vector u

const GrB_Scalar alpha,

const GrB_Vector v, // second input: vector v

const GrB_Scalar beta,

const GrB_Descriptor desc // descriptor for w and mask

) ;

Identical to GrB_Vector_eWiseAdd except that two scalars are used to
define how to compute the result when entries are present in one of the two
input vectors (u and v), but not the other. Each of the two input scalars,
alpha and beta must contain an entry. When computing the result t=u+v,
if u(i) is present but v(i) is not, then t(i)=u(i)+beta. Likewise, if v(i)
is present but u(i) is not, then t(i)=alpha+v(i), where + denotes the
binary operator, add. The add operator may be a binary operator created
by GxB_BinaryOp_new_IndexOp.

233

12.6.2 GxB Matrix eWiseUnion: element-wise matrix addition

GrB_Info GxB_eWiseUnion // C<M> = accum (C, A+B)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_BinaryOp add, // defines ’+’ for T=A+B

const GrB_Matrix A, // first input: matrix A

const GrB_Scalar alpha,

const GrB_Matrix B, // second input: matrix B

const GrB_Scalar beta,

const GrB_Descriptor desc // descriptor for C, M, A, and B

) ;

Identical to GrB_Matrix_eWiseAdd except that two scalars are used to
define how to compute the result when entries are present in one of the two
input matrices (A and B), but not the other. Each of the two input scalars,
alpha and beta must contain an entry. When computing the result T=A+B, if
A(i,j) is present but B(i,j)) is not, then T(i,j)=A(i,j)+beta. Likewise,
if B(i,j) is present but A(i,j) is not, then T(i,j)=alpha+B(i,j), where +
denotes the binary operator, add. The add operator may be a binary operator
created by GxB_BinaryOp_new_IndexOp.

234

12.7 GrB extract: submatrix extraction

The GrB_extract function is a generic name for three specific functions:
GrB_Vector_extract, GrB_Col_extract, and GrB_Matrix_extract. The
generic name appears in the function signature, but the specific function
name is used when describing what each variation does.

12.7.1 GrB Vector extract: extract subvector from vector

GrB_Info GrB_extract // w<mask> = accum (w, u(I))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_extract extracts a subvector from another vector, identical
to t = u (I) in MATLAB where I is an integer vector of row indices. Refer
to GrB_Matrix_extract for further details; vector extraction is the same as
matrix extraction with n-by-1 matrices. See Section 11 for a description of I
and ni. The final step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except
that all the terms are column vectors instead of matrices.

12.7.2 GxB Vector extract Vector: extract subvector from vector

GrB_Info GrB_extract // w<mask> = accum (w, u(I))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Vector u, // first input: vector u

const GrB_Vector I_vector, // row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GxB_Vector_extract_Vector is identical to GrB_Vector_extract, ex-
cept that the row indices are given by the GrB_Vector I with ni entries. The
interpretation of I_vector is controlled by descriptor setting GxB_ROWINDEX_LIST.

235

The method can use either the indices or values of the input vector, or it can
use the values as a stride (lo:inc:hi); the default is to use the values. See
Section 6.16.4 for details.

12.7.3 GrB Matrix extract: extract submatrix from matrix

GrB_Info GrB_extract // C<Mask> = accum (C, A(I,J))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_Matrix_extract extracts a submatrix from another matrix, identi-
cal to T = A(I,J) in MATLAB where I and J are integer vectors of row and
column indices, respectively, except that indices are zero-based in Graph-
BLAS and one-based in MATLAB. The input matrix A may be transposed
first, via the descriptor. The type of T and A are the same. The size of C is
|I|-by-|J|. Entries outside A(I,J) are not accessed and do not take part in
the computation. More precisely, assuming the matrix A is not transposed,
the matrix T is defined as follows:

T.matrix = zeros (ni, nj) ; % a matrix of size ni-by-nj

T.pattern = false (ni, nj) ;

for i = 1:ni

for j = 1:nj

if (A (I(i),J(j)).pattern)

T (i,j).matrix = A (I(i),J(j)).matrix ;

T (i,j).pattern = true ;

end

end

end

If duplicate indices are present in I or J, the above method defines the
result in T. Duplicates result in the same values of A being copied into different
places in T. See Section 11 for a description of the row indices I and ni, and
the column indices J and nj. The final step is C⟨M⟩ = C⊙T, as described
in Section 2.3.

236

Performance considerations: If A is not transposed via input descriptor:
if |I| is small, then it is fastest if A is GrB_ROWMAJOR; if |J| is small, then it
is fastest if A is GrB_COLMAJOR. The opposite is true if A is transposed.

12.7.4 GxB Matrix extract Vector: extract submatrix from matrix

GrB_Info GrB_extract // C<Mask> = accum (C, A(I,J))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Matrix A, // first input: matrix A

const GrB_Vector I_vector, // row indices

const GrB_Vector J_vector, // column indices

const GrB_Descriptor desc // descriptor for C, M, and A

) ;

GxB_Matrix_extract_Vector is identical to GrB_Matrix_extract, ex-
cept that the row indices are given by the GrB_Vector I with ni entries,
and the column indices are given by the GrB_Vector J with nj entries. The
interpretation of I_vector and J_vector are controlled by descriptor setting
GxB_ROWINDEX_LIST and GxB_COLINDEX_LIST, respectively. The method can
use either the indices or values of each of the input vectors, or it can use the
values as a stride (lo:inc:hi); the default is to use the values. See Sec-
tion 6.16.4 for details.

12.7.5 GrB Col extract: extract column vector from matrix

GrB_Info GrB_extract // w<mask> = accum (w, A(I,j))

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_Col_extract extracts a subvector from a matrix, identical to t = A (I,j)

in MATLAB where I is an integer vector of row indices and where j is a single

237

column index. The input matrix A may be transposed first, via the descrip-
tor, which results in the extraction of a single row j from the matrix A, the
result of which is a column vector w. The type of t and A are the same. The
size of w is |I|-by-1.

See Section 11 for a description of the row indices I and ni. The final
step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that all the terms
are column vectors instead of matrices.

Performance considerations: If A is not transposed: it is fastest if the
format of A is GrB_COLMAJOR. The opposite is true if A is transposed.

12.7.6 GxB Col extract Vector: extract column vector from matrix

GrB_Info GrB_extract // w<mask> = accum (w, A(I,j))

(

GrB_Vector w, // input/output matrix for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Matrix A, // first input: matrix A

const GrB_Vector I_vector, // row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GxB_Col_extract_Vector is identical to GrB_Col_extract, except that
the row indices are given by the GrB_Vector I with ni entries. The interpre-
tation of I_vector is controlled by descriptor setting GxB_ROWINDEX_LIST.
The method can use either the indices or values of the input vector, or it can
use the values as a stride (lo:inc:hi); the default is to use the values. See
Section 6.16.4 for details.

238

12.8 GrB assign: submatrix assignment

The methods described in this section are all variations of the form C(I,J)=A,
which modifies a submatrix of the matrix C. All methods can be used in their
generic form with the single name GrB_assign. These methods are very
similar to their GxB_subassign counterparts in Section 12.9. They differ
primarily in the size of the Mask, and how the GrB_REPLACE option works.
Section 12.11 compares GxB_subassign and GrB_assign.

See Section 11 for a description of I, ni, J, and nj.

12.8.1 GrB Vector assign: assign to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),u)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_assign operates on a subvector w(I) of w, modifying it with
the vector u. The mask vector has the same size as w. The method is identical
to GrB_Matrix_assign described in Section 12.8.3, where all matrices have
a single column each. The only other difference is that the input u in this
method is not transposed via the GrB_INP0 descriptor.

12.8.2 GxB Vector assign Vector: assign to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),u)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)

const GrB_Vector u, // first input: vector u

const GrB_Vector I_vector, // row indices

const GrB_Descriptor desc

) ;

239

GxB_Vector_assign_Vector is identical to GrB_Vector_assign, except
that the row indices are given by the GrB_Vector I with ni entries. The in-
terpretation of I_vector is controlled by descriptor setting GxB_ROWINDEX_LIST.
The method can use either the indices or values of the input vector, or it can
use the values as a stride (lo:inc:hi); the default is to use the values. See
Section 6.16.4 for details.

12.8.3 GrB Matrix assign: assign to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),A)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_Matrix_assign operates on a submatrix S of C, modifying it with
the matrix A. It may also modify all of C, depending on the input descriptor
desc and the Mask.

Step GraphBLAS description
notation

1 S = C(I,J) extract C(I,J) submatrix
2 S = S⊙A apply the accumulator (but not the mask) to S
3 Z = C make a copy of C
4 Z(I,J) = S put the submatrix into Z(I,J)
5 C⟨M⟩ = Z apply the mask/replace phase to all of C

In contrast to GxB_subassign, the Mask has the same as C.
Step 1 extracts the submatrix and then Step 2 applies the accumulator

(or S = A if accum is NULL). The Mask is not yet applied.
Step 3 makes a copy of theCmatrix, and then Step 4 writes the submatrix

S into Z. This is the same as Step 3 of GxB_subassign, except that it
operates on a temporary matrix Z.

Finally, Step 5 writes Z back intoC via the Mask, using the Mask/Replace

240

Phase described in Section 2.3. If GrB_REPLACE is enabled, then all of C is
cleared prior to writing Z via the mask. As a result, the GrB_REPLACE option
can delete entries outside the C(I,J) submatrix.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GrB_ROWMAJOR; if |J| is small, then it is fastest
if the format of C is GrB_COLMAJOR. The opposite is true if A is transposed.

12.8.4 GxB Matrix assign Vector: assign to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),A)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)

const GrB_Matrix A, // first input: matrix A

const GrB_Vector I_vector, // row indices

const GrB_Vector J_vector, // column indices

const GrB_Descriptor desc

) ;

GxB_Matrix_assign_Vector is identical to GrB_Matrix_assign, except
that the row indices are given by the GrB_Vector I with ni entries, and
the column indices are given by the GrB_Vector J with nj entries. The
interpretation of I_vector and J_vector are controlled by descriptor setting
GxB_ROWINDEX_LIST and GxB_COLINDEX_LIST, respectively. The method can
use either the indices or values of each of the input vectors, or it can use
the values as a stride (lo:inc:hi); the default is to use the values. See
Section 6.16.4 for details.

241

12.8.5 GrB Col assign: assign to a sub-column of a matrix

GrB_Info GrB_assign // C<mask>(I,j) = accum (C(I,j),u)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(:,j), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)

const GrB_Vector u, // input vector

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for C(:,j) and mask

) ;

GrB_Col_assignmodifies a single sub-column of a matrix C. It is the same
as GrB_Matrix_assign where the index vector J[0]=j is a single column
index, and where all matrices in GrB_Matrix_assign (except C) consist of a
single column.

Unlike GrB_Matrix_assign, the mask is a vector with the same size as a
single column of C.

The input descriptor GrB_INP0 is ignored; the input vector u is not trans-
posed. Refer to GrB_Matrix_assign for further details.

Performance considerations: GrB_Col_assign is much faster than GrB_Row_assign
if the format of C is GrB_COLMAJOR. GrB_Row_assign is much faster than
GrB_Col_assign if the format of C is GrB_ROWMAJOR.

12.8.6 GxB Col assign Vector: assign to a sub-column of a matrix

GrB_Info GrB_assign // C<mask>(I,j) = accum (C(I,j),u)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(:,j), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)

const GrB_Vector u, // input vector

const GrB_Vector I_vector, // row indices

GrB_Index j, // column index

const GrB_Descriptor desc

) ;

GxB_Col_assign_Vector is identical to GrB_Col_assign, except that the
row indices are given by the GrB_Vector I with ni entries. The interpre-
tation of I_vector is controlled by descriptor setting GxB_ROWINDEX_LIST.

242

The method can use either the indices or values of the input vector, or it can
use the values as a stride (lo:inc:hi); the default is to use the values. See
Section 6.16.4 for details.

12.8.7 GrB Row assign: assign to a sub-row of a matrix

GrB_Info GrB_assign // C<mask’>(i,J) = accum (C(i,J),u’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(i,:), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)

const GrB_Vector u, // input vector

const GrB_Index i, // row index

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(i,:) and mask

) ;

GrB_Row_assign modifies a single sub-row of a matrix C. It is the same
as GrB_Matrix_assign where the index vector I[0]=i is a single row index,
and where all matrices in GrB_Matrix_assign (except C) consist of a single
row.

Unlike GrB_Matrix_assign, the mask is a vector with the same size as a
single row of C.

The input descriptor GrB_INP0 is ignored; the input vector u is not trans-
posed. Refer to GrB_Matrix_assign for further details.

Performance considerations: GrB_Col_assign is much faster than GrB_Row_assign
if the format of C is GrB_COLMAJOR. GrB_Row_assign is much faster than
GrB_Col_assign if the format of C is GrB_ROWMAJOR.

243

12.8.8 GxB Row assign Vector: assign to a sub-row of a matrix

GrB_Info GrB_assign // C<mask’>(i,J) = accum (C(i,J),u’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // mask for C(i,:), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)

const GrB_Vector u, // input vector

GrB_Index i, // row index

const GrB_Vector J_vector, // column indices

const GrB_Descriptor desc

) ;

GxB_Row_assign_Vector is identical to GrB_Row_assign, except that the
column indices are given by the GrB_Vector J with nj entries. The interpre-
tation of J_vector is controlled by descriptor setting GxB_COLINDEX_LIST.
The method can use either the indices or values of the input vector, or it can
use the values as a stride (lo:inc:hi); the default is to use the values. See
Section 6.16.4 for details.

12.8.9 GrB Vector assign <type>: assign a scalar to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),x)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)

const <type> x, // scalar to assign to w(I)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_assign_<type> assigns a single scalar to an entire subvector
of the vector w. The operation is exactly like setting a single entry in an n-
by-1 matrix, A(I,0) = x, where the column index for a vector is implicitly
j=0. The mask vector has the same size as w. If x is a GrB_Scalar, the
nonpolymorphic name of the method is GrB_Vector_assign_Scalar. For
further details of this function, see GrB_Matrix_assign_<type> in the next
section (12.8.11). Following the C API Specification, results are well-defined
if I contains duplicate indices. Duplicate indices are simply ignored. See
Section 12.10 for more details.

244

12.8.10 GxB Vector assign Scalar Vector: assign a scalar to a subvector

GrB_Info GrB_assign // w<mask>(I) = accum (w(I),x)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(w(I),x)

const GrB_Scalar x, // scalar to assign to w(I)

const GrB_Vector I_vector, // row indices

const GrB_Descriptor desc

) ;

GxB_Vector_assign_Scalar_Vector is identical to GrB_Vector_assign_Scalar,
except that the row indices are given by the GrB_Vector I with ni en-
tries. The interpretation of I_vector is controlled by descriptor setting
GxB_ROWINDEX_LIST. The method can use either the indices or values of the
input vector, or it can use the values as a stride (lo:inc:hi); the default is
to use the values. See Section 6.16.4 for details.

12.8.11 GrB Matrix assign <type>: assign a scalar to a submatrix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),x)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)

const <type> x, // scalar to assign to C(I,J)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C and Mask

) ;

GrB_Matrix_assign_<type> assigns a single scalar to an entire subma-
trix of C, like the scalar expansion C(I,J)=x in MATLAB. The scalar x is
implicitly expanded into a matrix A of size ni by nj, and then the matrix
A is assigned to C(I,J) using the same method as in GrB_Matrix_assign.
Refer to that function in Section 12.8.3 for further details.

The Mask has the same size as C.
For the accumulation step, the scalar x is typecasted directly into the

type of C when the accum operator is not applied to it, or into the ytype

245

of the accum operator, if accum is not NULL, for entries that are already
present in C.

The <type> x notation is otherwise the same as GrB_Matrix_setElement
(see Section 6.10.12). Any value can be passed to this function and its type
will be detected, via the _Generic feature of C11. For a user-defined type,
x is a void * pointer that points to a memory space holding a single entry
of a scalar that has exactly the same user-defined type as the matrix C. This
user-defined type must exactly match the user-defined type of C since no
typecasting is done between user-defined types.

If a void * pointer is passed in and the type of the underlying scalar does
not exactly match the user-defined type of C, then results are undefined. No
error status will be returned since GraphBLAS has no way of catching this
error.

If x is a GrB_Scalar, the nonpolymorphic name of the method is
GrB_Matrix_assign_Scalar. In this case, if x has no entry, then it is im-
plicitly expanded into a matrix A of size ni by nj, with no entries present.

Following the C API Specification, results are well-defined if I or J contain
duplicate indices. Duplicate indices are simply ignored. See Section 12.10
for more details.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GrB_ROWMAJOR; if |J| is small, then it is fastest
if the format of C is GrB_COLMAJOR. The opposite is true if A is transposed.

12.8.12 GxB Matrix assign Scalar Vector: assign a scalar to a subma-
trix

GrB_Info GrB_assign // C<Mask>(I,J) = accum (C(I,J),x)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)

const GrB_Scalar x, // scalar to assign to C(I,J)

const GrB_Vector I_vector, // row indices

const GrB_Vector J_vector, // column indices

const GrB_Descriptor desc

) ;

GxB_Matrix_assign_Scalar_Vector is identical to GrB_Matrix_assign_Scalar,
except that the row indices are given by the GrB_Vector I with ni entries,

246

and the column indices are given by the GrB_Vector J with nj entries. The
interpretation of I_vector and J_vector are controlled by descriptor setting
GxB_ROWINDEX_LIST and GxB_COLINDEX_LIST, respectively. The method can
use either the indices or values of each of the input vectors, or it can use the
values as a stride (lo:inc:hi); the default is to use the values. See Sec-
tion 6.16.4 for details.

247

12.9 GxB subassign: submatrix assignment

The methods described in this section are all variations of the form C(I,J)=A,
which modifies a submatrix of the matrix C. All methods can be used in
their generic form with the single name GxB_subassign. This is reflected
in the prototypes. However, to avoid confusion between the different kinds
of assignment, the name of the specific function is used when describing
each variation. If the discussion applies to all variations, the simple name
GxB_subassign is used.

See Section 11 for a description of the row indices I and ni, and the
column indices J and nj.

GxB_subassign is very similar to GrB_assign, described in Section 12.8.
The two operations are compared and contrasted in Section 12.11. For a
discussion of how duplicate indices are handled in I and J, see Section 12.10.

12.9.1 GxB Vector subassign: assign to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),u)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w(I), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)

const GrB_Vector u, // first input: vector u

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w(I) and mask

) ;

GxB_Vector_subassign operates on a subvector w(I) of w, modifying
it with the vector u. The method is identical to GxB_Matrix_subassign

described in Section 12.9.3, where all matrices have a single column each.
The mask has the same size as w(I) and u. The only other difference is that
the input u in this method is not transposed via the GrB_INP0 descriptor.

248

12.9.2 GxB Vector subassign Vector: assign to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),u)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w(I), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)

const GrB_Vector u, // first input: vector u

const GrB_Vector I_vector, // row indices

const GrB_Descriptor desc

) ;

GxB_Vector_subassign_Vector is identical to GxB_Vector_subassign,
except that the row indices are given by the GrB_Vector I with ni en-
tries. The interpretation of I_vector is controlled by descriptor setting
GxB_ROWINDEX_LIST. The method can use either the indices or values of the
input vector, or it can use the values as a stride (lo:inc:hi); the default is
to use the values. See Section 6.16.4 for details.

12.9.3 GxB Matrix subassign: assign to a submatrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),A)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)

const GrB_Matrix A, // first input: matrix A

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(I,J), Mask, and A

) ;

GxB_Matrix_subassign operates only on a submatrix S of C, modifying
it with the matrix A. For this operation, the result is not the entire matrix C,
but a submatrix S=C(I,J) of C. The steps taken are as follows, except that
A may be optionally transposed via the GrB_INP0 descriptor option.

249

Step GraphBLAS description
notation

1 S = C(I,J) extract the C(I,J) submatrix
2 S⟨M⟩ = S⊙A apply the accumulator/mask to the submatrix S
3 C(I,J) = S put the submatrix S back into C(I,J)

The accumulator/mask step in Step 2 is the same as for all other Graph-
BLAS operations, described in Section 2.3, except that for GxB_subassign,
it is applied to just the submatrix S = C(I,J), and thus the Mask has the
same size as A, S, and C(I,J).

The GxB_subassign operation is the reverse of matrix extraction:

� For submatrix extraction, GrB_Matrix_extract, the submatrix A(I,J)
appears on the right-hand side of the assignment, C=A(I,J), and entries
outside of the submatrix are not accessed and do not take part in the
computation.

� For submatrix assignment, GxB_Matrix_subassign, the submatrix C(I,J)
appears on the left-hand-side of the assignment, C(I,J)=A, and entries
outside of the submatrix are not accessed and do not take part in the
computation.

In both methods, the accumulator and mask modify the submatrix of the
assignment; they simply differ on which side of the assignment the submatrix
resides on. In both cases, if the Mask matrix is present it is the same size as
the submatrix:

� For submatrix extraction, C⟨M⟩ = C⊙A(I,J) is computed, where
the submatrix is on the right. The mask M has the same size as the
submatrix A(I,J).

� For submatrix assignment,C(I,J)⟨M⟩ = C(I,J)⊙A is computed, where
the submatrix is on the left. The mask M has the same size as the sub-
matrix C(I,J).

In Step 1, the submatrix S is first computed by the GrB_Matrix_extract
operation, S=C(I,J).

Step 2 accumulates the results S⟨M⟩ = S⊙T, exactly as described in
Section 2.3, but operating on the submatrix S, not C, using the optional

250

Mask and accum operator. The matrix T is simply T = A, or T = AT if A
is transposed via the desc descriptor, GrB_INP0. The GrB_REPLACE option
in the descriptor clears S after computing Z = T or Z = C⊙T, not all of
C since this operation can only modify the specified submatrix of C.

Finally, Step 3 writes the result (which is the modified submatrix S and
not all of C) back into the C matrix that contains it, via the assignment
C(I,J)=S, using the reverse operation from the method described for matrix
extraction:

for i = 1:ni

for j = 1:nj

if (S (i,j).pattern)

C (I(i),J(j)).matrix = S (i,j).matrix ;

C (I(i),J(j)).pattern = true ;

end

end

end

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GrB_ROWMAJOR; if |J| is small, then it is fastest
if the format of C is GrB_COLMAJOR. The opposite is true if A is transposed.

12.9.4 GxB Matrix subassign Vector: assign to a submatrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),A)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // mask for C(I,J), unused if NULL

const GrB_BinaryOp accum, // accum for Z=accum(C(I,J),T)

const GrB_Matrix A, // first input: matrix A

const GrB_Vector I_vector, // row indices

const GrB_Vector J_vector, // column indices

const GrB_Descriptor desc

) ;

GxB_Matrix_subassign_Vector is identical to GxB_Matrix_subassign,
except that the row indices are given by the GrB_Vector I with ni entries,
and the column indices are given by the GrB_Vector J with nj entries. The
interpretation of I_vector and J_vector are controlled by descriptor setting
GxB_ROWINDEX_LIST and GxB_COLINDEX_LIST, respectively. The method can
use either the indices or values of each of the input vectors, or it can use

251

the values as a stride (lo:inc:hi); the default is to use the values. See
Section 6.16.4 for details.

12.9.5 GxB Col subassign: assign to a sub-column of a matrix

GrB_Info GxB_subassign // C(I,j)<mask> = accum (C(I,j),u)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(I,j), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)

const GrB_Vector u, // input vector

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index j, // column index

const GrB_Descriptor desc // descriptor for C(I,j) and mask

) ;

GxB_Col_subassign modifies a single sub-column of a matrix C. It is the
same as GxB_Matrix_subassign where the index vector J[0]=j is a single
column index (and thus nj=1), and where all matrices in GxB_Matrix_subassign
(except C) consist of a single column. The mask vector has the same size as
u and the sub-column C(I,j). The input descriptor GrB_INP0 is ignored;
the input vector u is not transposed. Refer to GxB_Matrix_subassign for
further details.

Performance considerations: GxB_Col_subassign is much faster than
GxB_Row_subassign if the format of C is GrB_COLMAJOR. GxB_Row_subassign
is much faster than GxB_Col_subassign if the format of C is GrB_ROWMAJOR.

12.9.6 GxB Col subassign Vector: assign to a sub-column of a matrix

GrB_Info GxB_subassign // C(I,j)<mask> = accum (C(I,j),u)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(I,j), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)

const GrB_Vector u, // input vector

const GrB_Vector I_vector, // row indices

const GrB_Index j, // column index

const GrB_Descriptor desc

) ;

252

GxB_Col_subassign_Vector is identical to GxB_Col_subassign, except
that the row indices are given by the GrB_Vector I with ni entries. The in-
terpretation of I_vector is controlled by descriptor setting GxB_ROWINDEX_LIST.
The method can use either the indices or values of the input vector, or it can
use the values as a stride (lo:inc:hi); the default is to use the values. See
Section 6.16.4 for details.

12.9.7 GxB Row subassign: assign to a sub-row of a matrix

GrB_Info GxB_subassign // C(i,J)<mask’> = accum (C(i,J),u’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(i,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)

const GrB_Vector u, // input vector

const GrB_Index i, // row index

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(i,J) and mask

) ;

GxB_Row_subassign modifies a single sub-row of a matrix C. It is the
same as GxB_Matrix_subassign where the index vector I[0]=i is a single
row index (and thus ni=1), and where all matrices in GxB_Matrix_subassign

(except C) consist of a single row. The mask vector has the same size as u
and the sub-column C(I,j). The input descriptor GrB_INP0 is ignored; the
input vector u is not transposed. Refer to GxB_Matrix_subassign for further
details.

Performance considerations: GxB_Col_subassign is much faster than
GxB_Row_subassign if the format of C is GrB_COLMAJOR. GxB_Row_subassign
is much faster than GxB_Col_subassign if the format of C is GrB_ROWMAJOR.

253

12.9.8 GxB Row subassign Vector: assign to a sub-row of a matrix

GrB_Info GxB_Row_subassign_Vector // C(i,J)<mask’> = accum (C(i,J),u’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Vector mask, // optional mask for C(i,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)

const GrB_Vector u, // input vector

const GrB_Index i, // row index

const GrB_Vector J_vector, // column indices

const GrB_Descriptor desc

) ;

GxB_Row_subassign_Vector is identical to GrB_Row_subassign, except
that the column indices are given by the GrB_Vector J with nj entries. The
interpretation of J_vector is controlled by descriptor setting GxB_COLINDEX_LIST.
The method can use either the indices or values of the input vector, or it can
use the values as a stride (lo:inc:hi); the default is to use the values. See
Section 6.16.4 for details.

12.9.9 GxB Vector subassign <type>: assign a scalar to a subvector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),x)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w(I), unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)

const <type> x, // scalar to assign to w(I)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Descriptor desc // descriptor for w(I) and mask

) ;

GxB_Vector_subassign_<type> assigns a single scalar to an entire sub-
vector of the vector w. The operation is exactly like setting a single entry in
an n-by-1 matrix, A(I,0) = x, where the column index for a vector is im-
plicitly j=0. If x is a GrB_Scalar, the nonpolymorphic name of the method
is GxB_Vector_subassign_Scalar. For further details of this function, see
GxB_Matrix_subassign_<type> in Section 12.9.11.

254

12.9.10 GxB Vector subassign Scalar Vector: assign a scalar to a sub-
vector

GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),x)

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(w(I),x)

const GrB_Scalar scalar, // scalar to assign to w(I)

const GrB_Vector I_vector, // row indices

const GrB_Descriptor desc

) ;

GxB_Vector_subassign_Scalar_Vector is identical to GxB_Vector_subassign_Scalar,
except that the row indices are given by the GrB_Vector I with ni en-
tries. The interpretation of I_vector is controlled by descriptor setting
GxB_ROWINDEX_LIST. The method can use either the indices or values of the
input vector, or it can use the values as a stride (lo:inc:hi); the default is
to use the values. See Section 6.16.4 for details.

12.9.11 GxB Matrix subassign <type>: assign a scalar to a submatrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),x)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)

const <type> x, // scalar to assign to C(I,J)

const GrB_Index *I, // row indices

const GrB_Index ni, // number of row indices

const GrB_Index *J, // column indices

const GrB_Index nj, // number of column indices

const GrB_Descriptor desc // descriptor for C(I,J) and Mask

) ;

GxB_Matrix_subassign_<type> assigns a single scalar to an entire sub-
matrix of C, like the scalar expansion C(I,J)=x in MATLAB. The scalar
x is implicitly expanded into a matrix A of size ni by nj, with all entries
present and equal to x, and then the matrix A is assigned to C(I,J) using
the same method as in GxB_Matrix_subassign. Refer to that function in
Section 12.9.3 for further details. For the accumulation step, the scalar x is
typecasted directly into the type of C when the accum operator is not applied

255

to it, or into the ytype of the accum operator, if accum is not NULL, for
entries that are already present in C.

The <type> x notation is otherwise the same as GrB_Matrix_setElement
(see Section 6.10.12). Any value can be passed to this function and its type
will be detected, via the _Generic feature of C11. For a user-defined type,
x is a void * pointer that points to a memory space holding a single entry
of a scalar that has exactly the same user-defined type as the matrix C. This
user-defined type must exactly match the user-defined type of C since no
typecasting is done between user-defined types.

If a void * pointer is passed in and the type of the underlying scalar does
not exactly match the user-defined type of C, then results are undefined. No
error status will be returned since GraphBLAS has no way of catching this
error.

If x is a GrB_Scalar, the nonpolymorphic name of the method is
GxB_Matrix_subassign_Scalar. In this case, if x has no entry, then it is
implicitly expanded into a matrix A of size ni by nj, with no entries present.

Performance considerations: If A is not transposed: if |I| is small, then
it is fastest if the format of C is GrB_ROWMAJOR; if |J| is small, then it is fastest
if the format of C is GrB_COLMAJOR. The opposite is true if A is transposed.

12.9.12 GxB Matrix subassign Scalar Vector: assign a scalar to a sub-
matrix

GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),x)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)

const GrB_Scalar scalar, // scalar to assign to C(I,J)

const GrB_Vector I_vector, // row indices

const GrB_Vector J_vector, // column indices

const GrB_Descriptor desc

) ;

GxB_Matrix_subassign_Scalar_Vector is identical to GxB_Matrix_subassign_Scalar,
except that the row indices are given by the GrB_Vector I with ni entries,
and the column indices are given by the GrB_Vector J with nj entries. The
interpretation of I_vector and J_vector are controlled by descriptor setting
GxB_ROWINDEX_LIST and GxB_COLINDEX_LIST, respectively. The method can

256

use either the indices or values of each of the input vectors, or it can use the
values as a stride (lo:inc:hi); the default is to use the values. See Sec-
tion 6.16.4 for details.

257

12.10 Duplicate indices in GrB assign and GxB subassign

According to the GraphBLAS C API Specification if the index vectors I or
J contain duplicate indices, the results are undefined for GrB_Matrix_assign,
GrB_Matrix_assign, GrB_Col_assign, and GrB_Row_assign. Only the scalar
assignment operations (GrB_Matrix_assign_TYPE and GrB_Matrix_assign_TYPE)
are well-defined when duplicates appear in I and J. In those two functions,
duplicate indices are ignored.

As an extension to the specification, SuiteSparse:GraphBLAS provides a
definition of how duplicate indices are handled in all cases. If I has duplicate
indices, they are ignored and the last unique entry in the list is used. When
no mask and no accumulator is present, the results are identical to how MAT-
LAB handles duplicate indices in the built-in expression C(I,J)=A. Details
of how this is done is shown below.

function C = subassign (C, I, J, A)

% submatrix assignment with pre-sort of I and J; and remove duplicates

% delete duplicates from I, keeping the last one seen

[I2 I2k] = sort (I) ;

Idupl = [(I2 (1:end-1) == I2 (2:end)), false] ;

I2 = I2 (~Idupl) ;

I2k = I2k (~Idupl) ;

assert (isequal (I2, unique (I)))

% delete duplicates from J, keeping the last one seen

[J2 J2k] = sort (J) ;

Jdupl = [(J2 (1:end-1) == J2 (2:end)), false] ;

J2 = J2 (~Jdupl) ;

J2k = J2k (~Jdupl) ;

assert (isequal (J2, unique (J)))

% do the submatrix assignment, with no duplicates in I2 or J2

C (I2,J2) = A (I2k,J2k) ;

If a mask is present, then it is replaced with M = M (I2k, J2k) for
GxB_subassign, or with M = M (I2, J2) for GrB_assign. If an accumu-
lator operator is present, it is applied after the duplicates are removed, as
(for example):

C (I2,J2) = C (I2,J2) + A (I2k,J2k) ;

258

These definitions allow the MATLAB/Octave interface to GraphBLAS to
return the same results for C(I,J)=A for a GrB object as they do for built-in
MATLAB/Octave matrices. They also allow the assignment to be done in
parallel.

Results are always well-defined in SuiteSparse:GraphBLAS, but they might
not be what you expect. For example, suppose the MIN operator is being used
the following assigment to the vector x, and suppose I contains the entries
[0 0]. Suppose x is initially empty, of length 1, and suppose y is a vector of
length 2 with the values [5 7].

#include "GraphBLAS.h"

#undef I /* complex.h #define’s I, but I is used an array below */

#include <stdio.h>

int main (void)

{

GrB_init (GrB_NONBLOCKING) ;

GrB_Vector x, y ;

GrB_Vector_new (&x, GrB_INT32, 1) ;

GrB_Vector_new (&y, GrB_INT32, 2) ;

GrB_Index I [2] = {0, 0} ;

GrB_Vector_setElement (y, 5, 0) ;

GrB_Vector_setElement (y, 7, 1) ;

GrB_Vector_wait (&y) ;

GxB_print (x, 3) ;

GxB_print (y, 3) ;

GrB_assign (x, NULL, GrB_MIN_INT32, y, I, 2, NULL) ;

GrB_Vector_wait (&y) ;

GxB_print (x, 3) ;

GrB_finalize () ;

}

You might (wrongly) expect the result to be the vector x(0)=5, since two
entries seem to be assigned, and the min operator might be expected to take
the minimum of the two. This is not how SuiteSparse:GraphBLAS handles
duplicates.

Instead, the first duplicate index of I is discarded (I [0] = 0, and y(0)=5).
and only the second entry is used (I [1] = 0, and y(1)=7). The output of
the above program is:

259

1x1 GraphBLAS int32_t vector, sparse by col:

x, no entries

2x1 GraphBLAS int32_t vector, sparse by col:

y, 2 entries

(0,0) 5

(1,0) 7

1x1 GraphBLAS int32_t vector, sparse by col:

x, 1 entry

(0,0) 7

You see that the result is x(0)=7, since the y(0)=5 entry has been ignored
because of the duplicate indices in I.

SPEC: Providing a well-defined behavior for duplicate indices with ma-
trix and vector assignment is an extension to the specification. The spec-
ification only defines the behavior when assigning a scalar into a matrix
or vector, and states that duplicate indices otherwise lead to undefined
results.

260

12.11 Comparing GrB assign and GxB subassign

The GxB_subassign and GrB_assign operations are very similar, but they
differ in two ways:

1. The Mask has a different size: The mask in GxB_subassign has
the same dimensions as w(I) for vectors and C(I,J) for matrices. In
GrB_assign, the mask is the same size as w or C, respectively (ex-
cept for the row/col variants). The two masks are related. If M is the
mask for GrB_assign, then M(I,J) is the mask for GxB_subassign. If
there is no mask, or if I and J are both GrB_ALL, the two masks are
the same. For GrB_Row_assign and GrB_Col_assign, the mask vector
is the same size as a row or column of C, respectively. For the cor-
responding GxB_Row_subassign and GxB_Col_subassign operations,
the mask is the same size as the sub-row C(i,J) or subcolumn C(I,j),
respectively.

2. GrB_REPLACE is different: They differ in how C is affected in areas
outside the C(I,J) submatrix. In GxB_subassign, the C(I,J) sub-
matrix is the only part of C that can be modified, and no part of C
outside the submatrix is ever modified. In GrB_assign, it is possible
to delete entries in C outside the submatrix, but only in one specific
manner. Suppose the mask M is present (or, suppose it is not present
but GrB_COMP is true). After (optionally) complementing the mask, the
value of M(i,j) can be 0 for some entry outside the C(I,J) submatrix.
If the GrB_REPLACE descriptor is true, GrB_assign deletes this entry.

GxB_subassign and GrB_assign are identical if GrB_REPLACE is set to
its default value of false, and if the masks happen to be the same. The two
masks can be the same in two cases: either the Mask input is NULL (and
it is not complemented via GrB_COMP), or I and J are both GrB_ALL. If all
these conditions hold, the two algorithms are identical and have the same
performance. Otherwise, GxB_subassign is much faster than GrB_assign

when the latter must examine the entire matrix C to delete entries (when
GrB_REPLACE is true), and if it must deal with a much larger Mask matrix.
However, both methods have specific uses.

Consider using C(I,J)+=F for many submatrices F (for example, when
assembling a finite-element matrix). If the Mask is meant as a specification
for which entries of C should appear in the final result, then use GrB_assign.

261

If instead the Mask is meant to control which entries of the submatrix
C(I,J) are modified by the finite-element F, then use GxB_subassign. This
is particularly useful is the Mask is a template that follows along with the
finite-element F, independent of where it is applied to C. Using GrB_assign

would be very difficult in this case since a new Mask, the same size as C,
would need to be constructed for each finite-element F.

In GraphBLAS notation, the two methods can be described as follows:

matrix and vector subassign C(I,J)⟨M⟩ = C(I,J)⊙A
matrix and vector assign C⟨M⟩(I,J) = C(I,J)⊙A

This notation does not include the details of the GrB_COMP and GrB_REPLACE
descriptors, but it does illustrate the difference in the Mask. In the sub-
assign, Mask is the same size as C(I,J) and A. If I[0]=i and J[0]=j, Then
Mask(0,0) controls how C(i,j) is modified by the subassign, from the value
A(0,0). In the assign, Mask is the same size as C, and Mask(i,j) controls
how C(i,j) is modified.

The GxB_subassign and GrB_assign functions have the same signatures;
they differ only in how they consider the Mask and the GrB_REPLACE descrip-
tor

Details of each step of the two operations are listed below:

Step GrB_Matrix_assign GxB_Matrix_subassign

1 S = C(I,J) S = C(I,J)
2 S = S⊙A S⟨M⟩ = S⊙A
3 Z = C C(I,J) = S
4 Z(I,J) = S
5 C⟨M⟩ = Z

Step 1 is the same. In the Accumulator Phase (Step 2), the expression
S⊙A, described in Section 2.3, is the same in both operations. The result is
simply A if accum is NULL. It only applies to the submatrix S, not the whole
matrix. The result S⊙A is used differently in the Mask/Replace phase.

The Mask/Replace Phase, described in Section 2.3 is different:

� For GrB_assign (Step 5), the mask is applied to all of C. The mask has
the same size as C. Just prior to making the assignment via the mask,
the GrB_REPLACE option can be used to clear all of C first. This is the
only way in which entries in C that are outside the C(I,J) submatrix
can be modified by this operation.

262

� For GxB_subassign (Step 2b), the mask is applied to just S. The
mask has the same size as C(I,J), S, and A. Just prior to making the
assignment via the mask, the GrB_REPLACE option can be used to clear
S first. No entries in C that are outside the C(I,J) can be modified
by this operation. Thus, GrB_REPLACE has no effect on entries in C
outside the C(I,J) submatrix.

The differences between GrB_assign and GxB_subassign can be seen in
Tables 5 and 6. The first table considers the case when the entry cij is in the
C(I,J) submatrix, and it describes what is computed for both GrB_assign

and GxB_subassign. They perform the exact same computation; the only
difference is how the value of the mask is specified. Compare Table 5 with
Table 1 in Section 7.

The first column of Table 5 is yes if GrB_REPLACE is enabled, and a dash
otherwise. The second column is yes if an accumulator operator is given,
and a dash otherwise. The third column is cij if the entry is present in C,
and a dash otherwise. The fourth column is ai′j′ if the corresponding entry
is present in A, where i = I(i′) and j = J(i′).

The mask column is 1 if the effective value of the mask mask allows C
to be modified, and 0 otherwise. This is mij for GrB_assign, and mi′j′ for
GxB_subassign, to reflect the difference in the mask, but this difference is
not reflected in the table. The value 1 or 0 is the value of the entry in the
mask after it is optionally complemented via the GrB_COMP option.

Finally, the last column is the action taken in this case. It is left blank if
no action is taken, in which case cij is not modified if present, or not inserted
into C if not present.

263

repl accum C A mask action taken by GrB_assign and GxB_subassign

- - cij ai′j′ 1 cij = ai′j′ , update
- - - ai′j′ 1 cij = ai′j′ , insert
- - cij - 1 delete cij because ai′j′ not present
- - - - 1
- - cij ai′j′ 0
- - - ai′j′ 0
- - cij - 0
- - - - 0

yes - cij ai′j′ 1 cij = ai′j′ , update
yes - - ai′j′ 1 cij = ai′j′ , insert
yes - cij - 1 delete cij because ai′j′ not present
yes - - - 1
yes - cij ai′j′ 0 delete cij (because of GrB_REPLACE)
yes - - ai′j′ 0
yes - cij - 0 delete cij (because of GrB_REPLACE)
yes - - - 0

- yes cij ai′j′ 1 cij = cij ⊙ ai′j′ , apply accumulator
- yes - ai′j′ 1 cij = ai′j′ , insert
- yes cij - 1
- yes - - 1
- yes cij ai′j′ 0
- yes - ai′j′ 0
- yes cij - 0
- yes - - 0

yes yes cij ai′j′ 1 cij = cij ⊙ ai′j′ , apply accumulator
yes yes - ai′j′ 1 cij = ai′j′ , insert
yes yes cij - 1
yes yes - - 1
yes yes cij ai′j′ 0 delete cij (because of GrB_REPLACE)
yes yes - ai′j′ 0
yes yes cij - 0 delete cij (because of GrB_REPLACE)
yes yes - - 0

Table 5: Results of assign and subassign for entries in the C(I,J) submatrix

264

repl accum C C = Z mask action taken by GrB_assign

- - cij cij 1
- - - - 1
- - cij cij 0
- - - - 0

yes - cij cij 1
yes - - - 1
yes - cij cij 0 delete cij (because of GrB_REPLACE)
yes - - - 0

- yes cij cij 1
- yes - - 1
- yes cij cij 0
- yes - - 0

yes yes cij cij 1
yes yes - - 1
yes yes cij cij 0 delete cij (because of GrB_REPLACE)
yes yes - - 0

Table 6: Results of assign for entries outside the C(I,J) submatrix. Sub-
assign has no effect on these entries.

Table 6 illustrates how GrB_assign and GxB_subassign differ for entries
outside the submatrix. GxB_subassign never modifies any entry outside the
C(I,J) submatrix, but GrB_assign can modify them in two cases listed in
Table 6. When the GrB_REPLACE option is selected, and when the Mask(i,j)
for an entry cij is false (or if the Mask(i,j) is true and GrB_COMP is enabled
via the descriptor), then the entry is deleted by GrB_assign.

The fourth column of Table 6 differs from Table 5, since entries inA never
affect these entries. Instead, for all index pairs outside the I × J submatrix,
C and Z are identical (see Step 3 above). As a result, each section of the
table includes just two cases: either cij is present, or not. This in contrast
to Table 5, where each section must consider four different cases.

The GrB_Row_assign and GrB_Col_assign operations are slightly differ-
ent. They only affect a single row or column of C. For GrB_Row_assign,
Table 6 only applies to entries in the single row C(i,J) that are outside the
list of indices, J. For GrB_Col_assign, Table 6 only applies to entries in the
single column C(I,j) that are outside the list of indices, I.

265

12.11.1 Example

The difference between GxB_subassign and GrB_assign is illustrated in
the following example. Consider the 2-by-2 matrix C where all entries are
present.

C =

[
11 12
21 22

]
Suppose GrB_REPLACE is true, and GrB_COMP is false. Let the Mask be:

M =

[
1 1
0 1

]
.

Let A = 100, and let the index sets be I = 0 and J = 1. Consider the
computation C⟨M⟩(0, 1) = C(0, 1) + A, using the GrB_assign operation.
The result is:

C =

[
11 112
− 22

]
.

The (0, 1) entry is updated and the (1, 0) entry is deleted because its Mask
is zero. The other two entries are not modified since Z = C outside the
submatrix, and those two values are written back into C because their Mask
values are 1. The (1, 0) entry is deleted because the entry Z(1, 0) = 21 is
prevented from being written back into C since Mask(1,0)=0.

Now consider the analogous GxB_subassign operation. The Mask has the
same size as A, namely:

M =
[
1
]
.

After computing C(0, 1)⟨M⟩ = C(0, 1) +A, the result is

C =

[
11 112
21 22

]
.

Only the C(I,J) submatrix, the single entry C(0, 1), is modified by
GxB_subassign. The entry C(1, 0) = 21 is unaffected by GxB_subassign,
but it is deleted by GrB_assign.

266

12.11.2 Performance of GxB subassign, GrB assign and GrB * setElement

When SuiteSparse:GraphBLAS uses non-blocking mode, the modifications
to a matrix by GxB_subassign, GrB_assign, and GrB_*_setElement can
postponed, and computed all at once later on. This has a huge impact on
performance.

A sequence of assignments is fast if their completion can be postponed
for as long as possible, or if they do not modify the pattern at all. Modifying
the pattern can be costly, but it is fast if non-blocking mode can be fully
exploited.

Consider a sequence of t submatrix assignments C(I,J)=C(I,J)+A to an
n-by-n matrix C where each submatrix A has size a-by-a with s entries, and
where C starts with c entries. Assume the matrices are all stored in non-
hypersparse form, by row (GrB_ROWMAJOR).

If blocking mode is enabled, or if the sequence requires the matrix to
be completed after each assignment, each of the t assignments takes O(a +
s log n) time to process the A matrix and then O(n + c + s log s) time to
complete C. The latter step uses GrB_*_build to build an update matrix
and then merge it with C. This step does not occur if the sequence of
assignments does not add new entries to the pattern of C, however. As-
suming in the worst case that the pattern does change, the total time is
O(t [a+ s log n+ n+ c+ s log s]).

If the sequence can be computed with all updates postponed until the end
of the sequence, then the total time is no worse than O(a+s log n) to process
each A matrix, for t assignments, and then a single build at the end, taking
O(n+c+st log st) time. The total time is O(t [a+ s log n]+(n+c+st log st)).
If no new entries appear in C the time drops to O(t [a+ s log n]), and in this
case, the time for both methods is the same; both are equally efficient.

A few simplifying assumptions are useful to compare these times. Con-
sider a graph of n nodes with O(n) edges, and with a constant bound on the
degree of each node. The asymptotic bounds assume a worst-case scenario
where C has a least some dense rows (thus the log n terms). If these are not
present, if both t and c are O(n), and if a and s are constants, then the total
time with blocking mode becomes O(n2), assuming the pattern of C changes
at each assignment. This very high for a sparse graph problem. In contrast,
the non-blocking time becomes O(n log n) under these same assumptions,
which is asymptotically much faster.

267

The difference in practice can be very dramatic, since n can be many
millions for sparse graphs with n nodes and O(n), which can be handled on
a commodity laptop.

The following guidelines should be considered when using GxB_subassign,
GrB_assign and GrB_*_setElement.

1. A sequence of assignments that does not modify the pattern at all
is fast, taking as little as Ω(1) time per entry modified. The worst
case time complexity is O(log n) per entry, assuming they all modify
a dense row of C with n entries, which can occur in practice. It is
more common, however, that most rows of C have a constant number
of entries, independent of n. No work is ever left pending when the
pattern of C does not change.

2. A sequence of assignments that modifies the entries that already exist
in the pattern of a matrix, or adds new entries to the pattern (using
the same accum operator), but does not delete any entries, is fast. The
matrix is not completed until the end of the sequence.

3. Similarly, a sequence that modifies existing entries, or deletes them, but
does not add new ones, is also fast. This sequence can also repeatedly
delete pre-existing entries and then reinstate them and still be fast.
The matrix is not completed until the end of the sequence.

4. A sequence that mixes assignments of types (2) and (3) above can be
costly, since the matrix may need to be completed after each assign-
ment. The time complexity can become quadratic in the worst case.

5. However, any single assignment takes no more than O(a+ s log n+n+
c+s log s) time, even including the time for a matrix completion, where
C is n-by-n with c entries and A is a-by-a with s entries. This time is
essentially linear in the size of the matrix C, if A is relatively small and
sparse compared with C. In this case, n+c are the two dominant terms.

6. In general, GxB_subassign is faster than GrB_assign. If GrB_REPLACE
is used with GrB_assign, the entire matrix C must be traversed. This
is much slower than GxB_subassign, which only needs to examine the
C(I,J) submatrix. Furthermore, GrB_assign must deal with a much
larger Mask matrix, whereas GxB_subassign has a smaller mask. Since

268

its mask is smaller, GxB_subassign takes less time than GrB_assign

to access the mask.

Submatrix assignment in SuiteSparse:GraphBLAS is extremely efficient,
even without considering the advantages of non-blocking mode discussed in
Section 12.11. It can be up to 1000x faster than MATLAB R2019b, or
even higher depending on the kind of matrix assignment. MATLAB logical
indexing (the mask of GraphBLAS) is extremely faster with GraphBLAS
as compared in MATLAB R2019b; differences of up to 250,000x have been
observed (0.4 seconds in GraphBLAS versus 28 hours in MATLAB).

All of the algorithmic variants of assign/subassign in SuiteSparse:GraphBLAS
are either asymptotically optimal, or to within a log factor of being asymp-
totically optimal. The methods are also fully parallel. For hypersparse ma-
trices, the term n in the expressions in the above discussion is dropped, and
is replaced with h log h, at the worst case, where h << n is the number of
non-empty columns of a hypersparse matrix stored by column, or the number
of non-empty rows of a hypersparse matrix stored by row. In many methods,
n is replaced with h, not h log h.

269

12.12 GrB apply: apply a unary, binary, or index-unary
operator

GrB_apply is the generic name for 92 specific functions:

� GrB_Vector_apply and GrB_Matrix_apply apply a unary operator to
the entries of a matrix (two variants).

� GrB_*_apply_BinaryOp1st_* applies a binary operator where a sin-
gle scalar is provided as the x input to the binary operator. There
are 30 variants, depending on the type of the scalar: (matrix or vec-
tor) x (13 built-in types, one for user-defined types, and a version for
GrB_Scalar).

� GrB_*_apply_BinaryOp2nd_* applies a binary operator where a sin-
gle scalar is provided as the y input to the binary operator. There
are 30 variants, depending on the type of the scalar: (matrix or vec-
tor) x (13 built-in types, one for user-defined types, and a version for
GrB_Scalar).

� GrB_*_apply_IndexOp_* applies a GrB_IndexUnaryOp, single scalar is
provided as the scalar y input to the index-unary operator. There
are 30 variants, depending on the type of the scalar: (matrix or vec-
tor) x (13 built-in types, one for user-defined types, and a version for
GrB_Scalar).

The generic name appears in the function prototypes, but the specific
function name is used when describing each variation. When discussing fea-
tures that apply to all versions, the simple name GrB_apply is used.

12.12.1 GrB Vector apply: apply a unary operator to a vector

GrB_Info GrB_apply // w<mask> = accum (w, op(u))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_UnaryOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_apply applies a unary operator to the entries of a vector,
analogous to t = op(u) in MATLAB except the operator op is only applied

270

to entries in the pattern of u. Implicit values outside the pattern of u are not
affected. The entries in u are typecasted into the xtype of the unary operator.
The vector t has the same type as the ztype of the unary operator. The
final step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that all the
terms are column vectors instead of matrices.

12.12.2 GrB Matrix apply: apply a unary operator to a matrix

GrB_Info GrB_apply // C<Mask> = accum (C, op(A)) or op(A’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_UnaryOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_apply applies a unary operator to the entries of a matrix,
analogous to T = op(A) in MATLAB except the operator op is only applied
to entries in the pattern of A. Implicit values outside the pattern of A are not
affected. The input matrix A may be transposed first. The entries in A are
typecasted into the xtype of the unary operator. The matrix T has the same
type as the ztype of the unary operator. The final step is C⟨M⟩ = C⊙T,
as described in Section 2.3.

The built-in GrB_IDENTITY_T operators (one for each built-in type T)
are very useful when combined with this function, enabling it to compute
C⟨M⟩ = C⊙A. This makes GrB_apply a direct interface to the accumu-
lator/mask function for both matrices and vectors. The GrB_IDENTITY_T
operators also provide the fastest stand-alone typecasting methods in Suite-
Sparse:GraphBLAS, with all 13× 13 = 169 methods appearing as individual
functions, to typecast between any of the 13 built-in types.

To compute C⟨M⟩ = A or C⟨M⟩ = C⊙A for user-defined types, the
user application would need to define an identity operator for the type. Since
GraphBLAS cannot detect that it is an identity operator, it must call the
operator to make the full copy T=A and apply the operator to each entry of
the matrix or vector.

The other GraphBLAS operation that provides a direct interface to the
accumulator/mask function is GrB_transpose, which does not require an
operator to perform this task. As a result, GrB_transpose can be used as

271

an efficient and direct interface to the accumulator/mask function for both
built-in and user-defined types. However, it is only available for matrices,
not vectors.

12.12.3 GrB Vector apply BinaryOp1st: apply a binary operator to a
vector; 1st scalar binding

GrB_Info GrB_apply // w<mask> = accum (w, op(x,u))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_BinaryOp op, // operator to apply to the entries

<type> x, // first input: scalar x

const GrB_Vector u, // second input: vector u

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_apply_BinaryOp1st_<type> applies a binary operator z =
f(x, y) to a vector, where a scalar x is bound to the first input of the operator.
The scalar x can be a non-opaque C scalar corresponding to a built-in type,
a void * for user-defined types, or a GrB_Scalar. It is otherwise identical
to GrB_Vector_apply.

The op can be any binary operator except that it cannot be a user-
defined GrB_BinaryOp created by GxB_BinaryOp_new_IndexOp. For back-
ward compatibility with prior versions of SuiteSparse:GraphBLAS, built-in
index-based binary operators such as GxB_FIRSTI_INT32 may be used, how-
ever. The equivalent index-unary operators are used in their place.

272

12.12.4 GrB Vector apply BinaryOp2nd: apply a binary operator to a
vector; 2nd scalar binding

GrB_Info GrB_apply // w<mask> = accum (w, op(u,y))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_BinaryOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

<type> y, // second input: scalar y

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_apply_BinaryOp2nd_<type> applies a binary operator z =
f(x, y) to a vector, where a scalar y is bound to the second input of the
operator. The scalar x can be a non-opaque C scalar corresponding to a built-
in type, a void * for user-defined types, or a GrB_Scalar. It is otherwise
identical to GrB_Vector_apply.

The op can be any binary operator except that it cannot be a user-
defined GrB_BinaryOp created by GxB_BinaryOp_new_IndexOp. For back-
ward compatibility with prior versions of SuiteSparse:GraphBLAS, built-in
index-based binary operators such as GxB_FIRSTI_INT32 may be used, how-
ever. The equivalent index-unary operators are used in their place.

12.12.5 GrB Vector apply IndexOp: apply an index-unary operator to
a vector

GrB_Info GrB_apply // w<mask> = accum (w, op(u,y))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_IndexUnaryOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

const <type> y, // second input: scalar y

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_apply_IndexOp_<type> applies an index-unary operator z =
f(x, i, 0, y) to a vector. The scalar y can be a non-opaque C scalar corre-
sponding to a built-in type, a void * for user-defined types, or a GrB_Scalar.
It is otherwise identical to GrB_Vector_apply.

273

12.12.6 GrB Matrix apply BinaryOp1st: apply a binary operator to a
matrix; 1st scalar binding

GrB_Info GrB_apply // C<M>=accum(C,op(x,A))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_BinaryOp op, // operator to apply to the entries

<type> x, // first input: scalar x

const GrB_Matrix A, // second input: matrix A

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_apply_BinaryOp1st_<type> applies a binary operator z =
f(x, y) to a matrix, where a scalar x is bound to the first input of the operator.
The scalar x can be a non-opaque C scalar corresponding to a built-in type,
a void * for user-defined types, or a GrB_Scalar. It is otherwise identical
to GrB_Matrix_apply.

The op can be any binary operator except that it cannot be a user-
defined GrB_BinaryOp created by GxB_BinaryOp_new_IndexOp. For back-
ward compatibility with prior versions of SuiteSparse:GraphBLAS, built-in
index-based binary operators such as GxB_FIRSTI_INT32 may be used, how-
ever. The equivalent index-unary operators are used in their place.

12.12.7 GrB Matrix apply BinaryOp2nd: apply a binary operator to a
matrix; 2nd scalar binding

GrB_Info GrB_apply // C<M>=accum(C,op(A,y))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_BinaryOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

<type> y, // second input: scalar y

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_apply_BinaryOp2nd_<type> applies a binary operator z =
f(x, y) to a matrix, where a scalar x is bound to the second input of the

274

operator. The scalar y can be a non-opaque C scalar corresponding to a built-
in type, a void * for user-defined types, or a GrB_Scalar. It is otherwise
identical to GrB_Matrix_apply.

The op can be any binary operator except that it cannot be a user-
defined GrB_BinaryOp created by GxB_BinaryOp_new_IndexOp. For back-
ward compatibility with prior versions of SuiteSparse:GraphBLAS, built-in
index-based binary operators such as GxB_FIRSTI_INT32 may be used, how-
ever. The equivalent index-unary operators are used in their place.

12.12.8 GrB Matrix apply IndexOp: apply an index-unary operator to
a matrix

GrB_Info GrB_apply // C<M>=accum(C,op(A,y))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_IndexUnaryOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

const <type> y, // second input: scalar y

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_apply_IndexOp_<type> applies an index-unary operator z =
f(x, i, j, y) to a matrix. The scalar y can be a non-opaque C scalar corre-
sponding to a built-in type, a void * for user-defined types, or a GrB_Scalar.
It is otherwise identical to GrB_Matrix_apply.

275

12.13 GrB select: select entries based on an index-unary
operator

The GrB_select function is the generic name for 30 specific functions, de-
pending on whether it operates on a matrix or vector, and depending on
the type of the scalar y: (matrix or vector) x (13 built-in types, void * for
user-defined types, and a GrB_Scalar). The generic name appears in the
function prototypes, but the specific function name is used when describing
each variation. When discussing features that apply to both versions, the
simple name GrB_select is used.

12.13.1 GrB Vector select: select entries from a vector

GrB_Info GrB_select // w<mask> = accum (w, op(u))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_IndexUnaryOp op, // operator to apply to the entries

const GrB_Vector u, // first input: vector u

const <type> y, // second input: scalar y

const GrB_Descriptor desc // descriptor for w and mask

) ;

GrB_Vector_select_* applies a GrB_IndexUnaryOp operator to the en-
tries of a vector. If the operator evaluates as true for the entry u(i), it is
copied to the vector t, or not copied if the operator evaluates to false. The
vector t is then written to the result w via the mask/accumulator step. This
operation operates on vectors just as if they were m-by-1 matrices, except
that GraphBLAS never transposes a vector via the descriptor. Refer to the
next section (12.13.2) on GrB_Matrix_select for more details.

276

12.13.2 GrB Matrix select: apply a select operator to a matrix

GrB_Info GrB_select // C<M>=accum(C,op(A))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_IndexUnaryOp op, // operator to apply to the entries

const GrB_Matrix A, // first input: matrix A

const GrB_Scalar y, // second input: scalar y

const GrB_Descriptor desc // descriptor for C, mask, and A

) ;

GrB_Matrix_select_* applies a GrB_IndexUnaryOp operator to the en-
tries of a matrix. If the operator evaluates as true for the entry A(i,j), it
is copied to the matrix T, or not copied if the operator evaluates to false.
The input matrix A may be transposed first. The entries in A are typecasted
into the xtype of the select operator. The final step is C⟨M⟩ = C⊙T, as
described in Section 2.3.

The matrix T has the same size and type as A (or the transpose of A if
the input is transposed via the descriptor). The entries of T are a subset of
those of A. Each entry A(i,j) of A is passed to the op, as z = f(aij, i, j, y). If
A is transposed first then the operator is applied to entries in the transposed
matrix, A’. If z is returned as true, then the entry is copied into T, unchanged.
If it returns false, the entry does not appear in T.

The action of GrB_select with the built-in index-unary operators is de-
scribed in the table below. The MATLAB analogs are precise for tril and
triu, but shorthand for the other operations. The MATLAB diag function
returns a column with the diagonal, if A is a matrix, whereas the matrix T in
GrB_select always has the same size as A (or its transpose if the GrB_INP0

is set to GrB_TRAN). In the MATLAB analog column, diag is as if it operates
like GrB_select, where T is a matrix.

The following operators may be used on matrices with a user-defined
type: GrB_ROWINDEX_*, GrB_COLINDEX_*, GrB_DIAGINDEX_*, GrB_TRIL,
GrB_TRIU, GrB_DIAG, GrB_OFFIAG, GrB_COLLE, GrB_COLGT, GrB_ROWLE, and
GrB_ROWGT.

For floating-point values, comparisons with NaN always return false. The
GrB_VALUE* operators should not be used with a scalar y that is equal to
NaN. For this case, create a user-defined index-unary operator that performs
the test with the ANSI C isnan function instead.

277

GraphBLAS name MATLAB/Octave description
analog

GrB_ROWINDEX_* z=i+y select A(i,j) if i != -y

GrB_COLINDEX_* z=j+y select A(i,j) if j != -y

GrB_DIAGINDEX_* z=j-(i+y) select A(i,j) if j != i+y

GrB_TRIL z=(j<=(i+y)) select entries on or below the yth diagonal
GrB_TRIU z=(j>=(i+y)) select entries on or above the yth diagonal
GrB_DIAG z=(j==(i+y)) select entries on the yth diagonal
GrB_OFFDIAG z=(j!=(i+y)) select entries not on the yth diagonal
GrB_COLLE z=(j<=y) select entries in columns 0 to y

GrB_COLGT z=(j>y) select entries in columns y+1 and above
GrB_ROWLE z=(i<=y) select entries in rows 0 to y

GrB_ROWGT z=(i>y) select entries in rows y+1 and above
GrB_VALUENE_T z=(aij!=y) select A(i,j) if it is not equal to y

GrB_VALUEEQ_T z=(aij==y) select A(i,j) is it equal to y

GrB_VALUEGT_T z=(aij>y) select A(i,j) is it greater than y

GrB_VALUEGE_T z=(aij>=y) select A(i,j) is it greater than or equal to y

GrB_VALUELT_T z=(aij<y) select A(i,j) is it less than y

GrB_VALUELE_T z=(aij<=y) select A(i,j) is it less than or equal to y

278

12.14 GrB reduce: reduce to a vector or scalar

The generic function name GrB_reduce may be used for all specific functions
discussed in this section. When the details of a specific function are discussed,
the specific name is used for clarity.

12.14.1 GrB Matrix reduce Monoid reduce a matrix to a vector

GrB_Info GrB_reduce // w<mask> = accum (w,reduce(A))

(

GrB_Vector w, // input/output vector for results

const GrB_Vector mask, // optional mask for w, unused if NULL

const GrB_BinaryOp accum, // optional accum for z=accum(w,t)

const GrB_Monoid monoid, // reduce monoid for t=reduce(A)

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for w, mask, and A

) ;

GrB_Matrix_reduce_Monoid reduces a matrix to a column vector using
a monoid, roughly analogous to t = sum (A’) in MATLAB, in the default
case, where t is a column vector. By default, the method reduces across the
rows to obtain a column vector; use GrB_TRAN to reduce down the columns.

The input matrix A may be transposed first. Its entries are then typecast
into the type of the reduce operator or monoid. The reduction is applied
to all entries in A (i,:) to produce the scalar t (i). This is done without
the use of the identity value of the monoid. If the ith row A (i,:) has no
entries, then (i) is not an entry in t and its value is implicit. If A (i,:) has
a single entry, then that is the result t (i) and reduce is not applied at all
for the ith row. Otherwise, multiple entries in row A (i,:) are reduced via
the reduce operator or monoid to obtain a single scalar, the result t (i).

The final step is w⟨m⟩ = w ⊙ t, as described in Section 2.3, except that
all the terms are column vectors instead of matrices.

279

12.14.2 GrB Vector reduce <type>: reduce a vector to a scalar

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (u))

(

<type> *c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Vector u, // vector to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (u))

(

GrB_Scalar c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Vector u, // vector to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Vector_reduce_<type> reduces a vector to a scalar, analogous to
t = sum (u) in MATLAB, except that in GraphBLAS any commutative and
associative monoid can be used in the reduction.

The scalar c can be a pointer C type: bool, int8_t, ... float, double,
or void * for a user-defined type, or a GrB_Scalar. If c is a void * pointer
to a user-defined type, the type must be identical to the type of the vector
u. This cannot be checked by GraphBLAS and thus results are undefined if
the types are not the same.

If the vector u has no entries, that identity value of the monoid is copied
into the scalar t (unless c is a GrB_Scalar, in which case t is an empty
GrB_Scalar, with no entry). Otherwise, all of the entries in the vector are
reduced to a single scalar using the monoid.

The descriptor is unused, but it appears in case it is needed in future
versions of the GraphBLAS API. This function has no mask so its accumula-
tor/mask step differs from the other GraphBLAS operations. It does not use
the methods described in Section 2.3, but uses the following method instead.

If accum is NULL, then the scalar t is typecast into the type of c, and c = t

is the final result. Otherwise, the scalar t is typecast into the ytype of the
accum operator, and the value of c (on input) is typecast into the xtype of
the accum operator. Next, the scalar z = accum (c,t) is computed, of the
ztype of the accum operator. Finally, z is typecast into the final result, c.

280

If c is a non-opaque scalar, no error message can be returned by GrB_error.
If c is a GrB_Scalar, then GrB_error(&err,c) can be used to return an error
string, if an error occurs.

12.14.3 GrB Matrix reduce <type>: reduce a matrix to a scalar

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (A))

(

<type> *c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Matrix A, // matrix to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Info GrB_reduce // c = accum (c, reduce_to_scalar (A))

(

GrB_Scalar c, // result scalar

const GrB_BinaryOp accum, // optional accum for c=accum(c,t)

const GrB_Monoid monoid, // monoid to do the reduction

const GrB_Matrix A, // matrix to reduce

const GrB_Descriptor desc // descriptor (currently unused)

) ;

GrB_Matrix_reduce_<type> reduces a matrix A to a scalar, roughly anal-
ogous to t = sum (A (:)) in MATLAB. This function is identical to reduc-
ing a vector to a scalar, since the positions of the entries in a matrix or vector
have no effect on the result. Refer to the reduction to scalar described in the
previous Section 12.14.2.

281

12.15 GrB transpose: transpose a matrix

GrB_Info GrB_transpose // C<Mask> = accum (C, A’)

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const GrB_Matrix A, // first input: matrix A

const GrB_Descriptor desc // descriptor for C, Mask, and A

) ;

GrB_transpose transposes a matrix A, just like the array transpose T = A.’

in MATLAB. The internal result matrix T = A’ (or merely T = A if A is
transposed via the descriptor) has the same type as A. The final step is
C⟨M⟩ = C⊙T, as described in Section 2.3, which typecasts T as needed
and applies the mask and accumulator.

To be consistent with the rest of the GraphBLAS API regarding the de-
scriptor, the input matrix A may be transposed first by setting the GrB_INP0
setting to GrB_TRAN. This results in a double transpose, and thus A is not
transposed is computed.

282

12.16 GrB kronecker: Kronecker product

GrB_Info GrB_kronecker // C<Mask> = accum (C, kron(A,B))

(

GrB_Matrix C, // input/output matrix for results

const GrB_Matrix Mask, // optional mask for C, unused if NULL

const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)

const <operator> op, // defines ’*’ for T=kron(A,B)

const GrB_Matrix A, // first input: matrix A

const GrB_Matrix B, // second input: matrix B

const GrB_Descriptor desc // descriptor for C, Mask, A, and B

) ;

GrB_kronecker computes the Kronecker product,C⟨M⟩ = C⊙ kron(A,B)
where

kron(A,B) =

 a00 ⊗B . . . a0,n−1 ⊗B
...

. . .
...

am−1,0 ⊗B . . . am−1,n−1 ⊗B


The ⊗ operator is defined by the op parameter. It is applied in an element-
wise fashion (like GrB_eWiseMult), where the pattern of the submatrix aij⊗B
is the same as the pattern of B if aij is an entry in the matrix A, or empty
otherwise. The input matrices A and B can be of any dimension, and both
matrices may be transposed first via the descriptor, desc. Entries in A and
B are typecast into the input types of the op. The matrix T=kron(A,B) has
the same type as the ztype of the binary operator, op. The final step is
C⟨M⟩ = C⊙T, as described in Section 2.3.

The operator opmay be a GrB_BinaryOp, a GrB_Monoid, or a GrB_Semiring.
In the latter case, the multiplicative operator of the semiring is used. The
op may be a binary operator created by GxB_BinaryOp_new_IndexOp.

283

13 Printing GraphBLAS objects

The ten different objects handled by SuiteSparse:GraphBLAS are all opaque,
although nearly all of their contents can be extracted via methods such as
GrB_Matrix_extractTuples, GrB_Matrix_extractElement, GrB_get, and
so on. The GraphBLAS C API has no mechanism for printing all the contents
of GraphBLAS objects, but this is helpful for debugging. Ten type-specific
methods and two type-generic methods are provided:

GxB_Type_fprint print and check a GrB_Type

GxB_UnaryOp_fprint print and check a GrB_UnaryOp

GxB_BinaryOp_fprint print and check a GrB_BinaryOp

GxB_IndexUnaryOp_fprint print and check a GrB_IndexUnaryOp

GxB_IndexBinaryOp_fprint print and check a GxB_IndexBinaryOp

GxB_Monoid_fprint print and check a GrB_Monoid

GxB_Semiring_fprint print and check a GrB_Semiring

GxB_Descriptor_fprint print and check a GrB_Descriptor

GxB_Context_fprint print and check a GxB_Context

GxB_Matrix_fprint print and check a GrB_Matrix

GxB_Vector_fprint print and check a GrB_Vector

GxB_Scalar_fprint print and check a GrB_Scalar

GxB_fprint print/check any object to a file
GxB_print print/check any object to stdout

These methods do not modify the status of any object, and thus they
cannot return an error string for use by GrB_error.

If a matrix or vector has not been completed, the pending computations
are guaranteed to not be performed. The reason is simple. It is possible
for a bug in the user application (such as accessing memory outside the
bounds of an array) to mangle the internal content of a GraphBLAS object,
and the GxB_*print methods can be helpful tools to track down this bug.
If GxB_*print attempted to complete any computations prior to printing or
checking the contents of the matrix or vector, then further errors could occur,
including a segfault.

By contrast, GraphBLAS methods and operations that return values into
user-provided arrays or variables might finish pending operations before the
return these values, and this would change their state. Since they do not
change the state of any object, the GxB_*print methods provide a useful
method for debugging, and for a quick understanding of what GraphBLAS
is computing while developing a user application.

284

Each of the methods has a parameter of type GxB_Print_Level that
specifies the amount to print:

typedef enum

{

GxB_SILENT = 0, // nothing is printed, just check the object

GxB_SUMMARY = 1, // print a terse summary

GxB_SHORT = 2, // short description, about 30 entries of a matrix

GxB_COMPLETE = 3, // print the entire contents of the object

GxB_SHORT_VERBOSE = 4, // GxB_SHORT but with "%.15g" for doubles

GxB_COMPLETE_VERBOSE = 5 // GxB_COMPLETE but with "%.15g" for doubles

}

GxB_Print_Level ;

The ten type-specific functions include an additional argument, the name
string. The name is printed at the beginning of the display (assuming the
print level is not GxB_SILENT) so that the object can be more easily identified
in the output. For the type-generic methods GxB_fprint and GxB_print,
the name string is the variable name of the object itself.

If the file f is NULL, stdout is used. If name is NULL, it is treated as the
empty string. These are not error conditions.

The methods check their input objects carefully and extensively, even
when pr is equal to GxB_SILENT. The following error codes can be returned:

� GrB_SUCCESS: object is valid

� GrB_UNINITIALIZED_OBJECT: object is not initialized

� GrB_INVALID_OBJECT: object is not valid

� GrB_NULL_POINTER: object is a NULL pointer

� GrB_INVALID_VALUE: fprintf returned an I/O error.

The content of any GraphBLAS object is opaque, and subject to change.
As a result, the exact content and format of what is printed is implementation-
dependent, and will change from version to version of SuiteSparse:GraphBLAS.
Do not attempt to rely on the exact content or format by trying to parse
the resulting output via another program. The intent of these functions is
to produce a report of an object for visual inspection. If the user appli-
cation needs to extract content from a GraphBLAS matrix or vector, use
GrB_*_extractTuples or the import/export methods instead.

GraphBLAS matrices and vectors are zero-based, where indices of an
n-by-n matrix are in the range 0 to n − 1. However, MATLAB, Octave,

285

and Julia prefer to print their matrices and vectors as one-based. To enable
1-based printing, use GrB_set (GrB_GLOBAL, true, GxB_PRINT_1BASED).
Printing is done as zero-based by default.

13.1 GxB fprint: Print a GraphBLAS object to a file

GrB_Info GxB_fprint // print and check a GraphBLAS object

(

GrB_<objecttype> object, // object to print and check

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

The GxB_fprint function prints the contents of any of the ten Graph-
BLAS objects to the file f. If f is NULL, the results are printed to stdout.
For example, to print the entire contents of a matrix A to the file f, use
GxB_fprint (A, GxB_COMPLETE, f).

13.2 GxB print: Print a GraphBLAS object to stdout

GrB_Info GxB_print // print and check a GrB_Vector

(

GrB_<objecttype> object, // object to print and check

int pr, // print level (GxB_Print_Level)

) ;

GxB_print is the same as GxB_fprint, except that it prints the contents
of the object to stdout instead of a file f. For example, to print the entire
contents of a matrix A, use GxB_print (A, GxB_COMPLETE).

13.3 GxB Type fprint: Print a GrB Type

GrB_Info GxB_Type_fprint // print and check a GrB_Type

(

GrB_Type type, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

For example, GxB_Type_fprint (GrB_BOOL, "boolean type", GxB_COMPLETE, f)

prints the contents of the GrB_BOOL object to the file f.

286

13.4 GxB UnaryOp fprint: Print a GrB UnaryOp

GrB_Info GxB_UnaryOp_fprint // print and check a GrB_UnaryOp

(

GrB_UnaryOp unaryop, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

For example, GxB_UnaryOp_fprint (GrB_LNOT, "not", GxB_COMPLETE, f)

prints the GrB_LNOT unary operator to the file f.

13.5 GxB BinaryOp fprint: Print a GrB BinaryOp

GrB_Info GxB_BinaryOp_fprint // print and check a GrB_BinaryOp

(

GrB_BinaryOp binaryop, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

For example, GxB_BinaryOp_fprint (GrB_PLUS_FP64, "plus", GxB_COMPLETE, f)

prints the GrB_PLUS_FP64 binary operator to the file f.

13.6 GxB IndexUnaryOp fprint: Print a GrB IndexUnaryOp

GrB_Info GxB_IndexUnaryOp_fprint // print and check a GrB_IndexUnaryOp

(

GrB_IndexUnaryOp op, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

For example, GrB_IndexUnaryOp_fprint (GrB_TRIL, "tril", GxB_COMPLETE, f)

prints the GrB_TRIL index-unary operator to the file f.

287

13.7 GxB IndexBinaryOp fprint: Print a GxB IndexBinaryOp

GrB_Info GxB_IndexBinaryOp_fprint // print and check a GxB_IndexBinaryOp

(

GxB_IndexBinaryOp op, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

13.8 GxB Monoid fprint: Print a GrB Monoid

GrB_Info GxB_Monoid_fprint // print and check a GrB_Monoid

(

GrB_Monoid monoid, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

For example, GxB_Monoid_fprint (GxB_PLUS_FP64_MONOID, "plus monoid",

GxB_COMPLETE, f) prints the predefined GxB_PLUS_FP64_MONOID (based on
the binary operator GrB_PLUS_FP64) to the file f.

13.9 GxB Semiring fprint: Print a GrB Semiring

GrB_Info GxB_Semiring_fprint // print and check a GrB_Semiring

(

GrB_Semiring semiring, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

For example, GxB_Semiring_fprint (GxB_PLUS_TIMES_FP64, "standard",

GxB_COMPLETE, f) prints the predefined GxB_PLUS_TIMES_FP64 semiring to
the file f.

288

13.10 GxB Descriptor fprint: Print a GrB Descriptor

GrB_Info GxB_Descriptor_fprint // print and check a GrB_Descriptor

(

GrB_Descriptor descriptor, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

For example, GxB_Descriptor_fprint (d, "descriptor", GxB_COMPLETE, f)

prints the descriptor d to the file f.

13.11 GxB Context fprint: Print a GxB Context

GrB_Info GxB_Context_fprint // print and check a GxB_Context

(

GxB_Context Context, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

This method can be used to print the context created for a user thread,
or the contents of the GxB_CONTEXT_WORLD object.

13.12 GxB Matrix fprint: Print a GrB Matrix

GrB_Info GxB_Matrix_fprint // print and check a GrB_Matrix

(

GrB_Matrix A, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

For example, GxB_Matrix_fprint (A, "my matrix", GxB_SHORT, f) prints
about 30 entries from the matrix A to the file f.

289

13.13 GxB Vector fprint: Print a GrB Vector

GrB_Info GxB_Vector_fprint // print and check a GrB_Vector

(

GrB_Vector v, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

For example, GxB_Vector_fprint (v, "my vector", GxB_SHORT, f) prints
about 30 entries from the vector v to the file f.

13.14 GxB Scalar fprint: Print a GrB Scalar

GrB_Info GxB_Scalar_fprint // print and check a GrB_Scalar

(

GrB_Scalar s, // object to print and check

const char *name, // name of the object

int pr, // print level (GxB_Print_Level)

FILE *f // file for output

) ;

For example, GxB_Scalar_fprint (s, "my scalar", GxB_SHORT, f) prints
a short description of the scalar s to the file f.

13.15 Performance and portability considerations

Even when the print level is GxB_SILENT, these methods extensively check
the contents of the objects passed to them, which can take some time. They
should be considered debugging tools only, not for final use in production.

The return value of the GxB_*print methods can be relied upon, but the
output to the file (or stdout) can change from version to version. If these
methods are eventually added to the GraphBLAS C API Specification, a
conforming implementation might never print anything at all, regardless of
the pr value. This may be essential if the GraphBLAS library is installed in
a dedicated device, with no file output, for example.

Some implementations may wish to print nothing at all if the matrix is not
yet completed, or just an indication that the matrix has pending operations
and cannot be printed, when non-blocking mode is employed. In this case,
use GrB_Matrix_wait, GrB_Vector_wait, or GxB_Scalar_wait to finish all

290

pending computations first. If a matrix or vector has pending operations,
SuiteSparse:GraphBLAS prints a list of the pending tuples, which are the
entries not yet inserted into the primary data structure. It can also print out
entries that remain in the data structure but are awaiting deletion; these are
called zombies in the output report.

Most of the rest of the report is self-explanatory.

291

14 Matrix and Vector iterators

The GxB_Iterator is an object that allows user applications to iterate over
the entries of a matrix or vector, one entry at a time. Iteration can be done
in a linear manner (analogous to reading a file one entry at a time, from start
to finish), or in a random-access pattern (analogous to the fseek method for
repositioning the access to file to a different position).

Multiple iterators can be used on a single matrix or vector, even in parallel
by multiple user threads. While a matrix or vector is being used with an
iterator, the matrix or vector must not be modified. Doing so will lead to
undefined results.

Since accessing a matrix or vector via an iterator requires many calls to
the iterator methods, they must be very fast. Error checking is skipped,
except for the methods that create, attach, or free an iterator. Methods that
advance an iterator or that access values or indices from a matrix or vector
do not return error conditions. Instead, they have well-defined preconditions
that must be met (and which should be checked by the user application). If
those preconditions are not met, results are undefined.

The iterator methods are implemented in SuiteSparse:GraphBLAS as
both macros (via #define) and as functions of the same name that appear
in the compiled libgraphblas.so library. This requires that the opaque
contents of the iterator object be defined in GraphBLAS.h itself. The user
application must not access these contents directly, but can only do so safely
via the iterator methods provided by SuiteSparse:GraphBLAS.

The iterator object can be used in one of four sets of methods, for four
different access patterns:

1. row iterator: iterates across the rows of a matrix, and then within each
row to access the entries in a given row. Accessing all the entries of a
matrix using a row iterator requires an outer loop (for the rows) and an
inner loop (for the entries in each row). A matrix can be accessed via
a row iterator only if its format (determined by GrB_get (A, &fmt,

GrB_STORAGE_ORIENTATION_HINT)) is by-row (that is, GrB_ROWMAJOR).
See Section 10.

2. column iterator: iterates across the columns of a matrix, and then
within each column to access the entries in a given column. Accessing
all the entries of a matrix using a column iterator requires an outer loop

292

(for the columns) and an inner loop (for the entries in each column).
A matrix can be accessed via a column iterator only if its format (de-
termined by GrB_get (A, &fmt, GrB_STORAGE_ORIENTATION_HINT))
is by-column (that is, GrB_COLMAJOR). See Section 10.

3. entry iterator: iterates across the entries of a matrix. Accessing all the
entries of a matrix using an entry iterator requires just a single loop.
Any matrix can be accessed with an entry iterator.

4. vector iterator: iterates across the entries of a vector. Accessing all the
entries of a vector using a vector iterator requires just a single loop.
Any vector can be accessed with a vector iterator.

14.1 Creating and destroying an iterator

The process for using an iterator starts with the creation of an iterator, with
GxB_Iterator_new. This method creates an iterator object but does not
attach it to any specific matrix or vector:

GxB_Iterator iterator ;

GxB_Iterator_new (&iterator) ;

When finished, the iterator is freed with either of these methods:

GrB_free (&iterator) ;

GxB_Iterator_free (&iterator) ;

14.2 Attaching an iterator to a matrix or vector

This new iterator object can be attached to any matrix or vector, and used
as a row, column, or entry iterator for any matrix, or as an iterator for any
vector. The iterator can be used in any of these methods before it is freed,
but with just one access method at a time.

Once it is created, the iterator must be attached to a matrix or vector.
This process also selects the method by which the iterator will be used
for a matrix. Each of the four GxB_*Iterator_attach methods returns a
GrB_Info result.

1. row iterator:

GrB_Info info = GxB_rowIterator_attach (iterator, A, desc) ;

293

2. column iterator:

GrB_Info info = GxB_colIterator_attach (iterator, A, desc) ;

3. entry iterator:

GrB_Info info = GxB_Matrix_Iterator_attach (iterator, A, desc) ;

4. vector iterator:

GrB_Info info = GxB_Vector_Iterator_attach (iterator, v, desc) ;

On input to GxB_*Iterator_attach, the iterator must already exist,
having been created by GxB_Iterator_new. If the iterator is already at-
tached to a matrix or vector, it is detached and then attached to the given
matrix A or vector v.

The return values for row/column methods are:

� GrB_SUCCESS: if the iterator is successfully attached to the matrix A.

� GrB_NULL_POINTER: if the iterator or A are NULL.

� GrB_INVALID_OBJECT: if the matrix A is invalid.

� GrB_NOT_IMPLEMENTED: if the matrix A cannot be iterated in the re-
quested access method (row iterators require the matrix to be held
by-row, and column iterators require the matrix to be held by-column).

� GrB_OUT_OF_MEMORY: if the method runs out of memory.

The other two methods (entry iterator for matrices, or the vector iterator)
return the same error codes, except that they do not return GrB_NOT_IMPLEMENTED.

14.3 Seeking to an arbitrary position

Attaching the iterator to a matrix or vector does not define a specific
position for the iterator. To use the iterator, a single call to the corre-
sponding seek method is required. These GxB*_Iterator_*seek* methods
may also be used later on to change the position of the iterator arbitrarily.

1. row iterator:

294

GrB_Info info = GxB_rowIterator_seekRow (iterator, row) ;

GrB_Index kount = GxB_rowIterator_kount (iterator) ;

GrB_Info info = GxB_rowIterator_kseek (iterator, k) ;

These methods move a row iterator to a specific row, defined in one
of two ways: (1) the row index itself (in range 0 to nrows-1), or (2)
by specifying k, which moves the iterator to the kth explicit row (in
the range 0 to kount-1). For sparse, bitmap, or full matrices, these
two methods are identical. For hypersparse matrices, not all rows
are present in the data structure; these implicit rows are skipped and
not included in the kount. Implicit rows contain no entries. The
GxB_rowIterator_kountmethod returns the kount of the matrix, where
kount is equal to nrows for sparse, bitmap, and matrices, and kount

≤ nrows for hypersparse matrices. All three methods listed above can
be used for any row iterator.

The GxB_rowIterator_*seek* methods return GrB_SUCCESS if the
iterator has been moved to a row that contains at least one entry,
GrB_NO_VALUE if the row has no entries, or GxB_EXHAUSTED if the row
is out of bounds (row ≥ nrows or if k ≥ kount). None of these return
conditions are errors; they are all informational.

For sparse, bitmap, and full matrices, GxB_rowIterator_seekRow al-
ways moves to the given row. For hypersparse matrices, if the requested
row is implicit, the iterator is moved to the first explicit row following
it. If no such row exists, the iterator is exhausted and GxB_EXHAUSTED

is returned. The GxB_rowIterator_kseekmethod always moves to the
kth explicit row, for any matrix. Use GxB_rowIterator_getRowIndex,
described below, to determine the row index of the current position.

Precondition: on input, the iterator must have been successfully at-
tached to a matrix via a prior call to GxB_rowIterator_attach. Re-
sults are undefined if this precondition is not met.

2. column iterator:

GrB_Info info = GxB_colIterator_seekCol (iterator, col) ;

GrB_Index kount = GxB_colIterator_kount (iterator) ;

GrB_Info info = GxB_colIterator_kseek (iterator, k) ;

These methods move a column iterator to a specific column, defined in
one of two ways: (1) the column index itself (in range 0 to ncols-1), or

295

(2) by specifying k, which moves the iterator to the kth explicit column
(in the range 0 to kount-1). For sparse, bitmap, or full matrices, these
two methods are identical. For hypersparse matrices, not all columns
are present in the data structure; these implicit columns are skipped
and not included in the kount. Implicit columns contain no entries.
The GxB_colIterator_kount method returns the kount of the matrix,
where kount is equal to ncols for sparse, bitmap, and matrices, and
kount ≤ ncols for hypersparse matrices. All three methods listed
above can be used for any column iterator.

The GxB_colIterator_*seek* methods return GrB_SUCCESS if the it-
erator has been moved to a column that contains at least one entry,
GrB_NO_VALUE if the column has no entries, or GxB_EXHAUSTED if the
column is out of bounds (col ≥ ncols or k ≥ kount). None of these
return conditions are errors; they are all informational.

For sparse, bitmap, and full matrices, GxB_colIterator_seekCol al-
ways moves to the given column. For hypersparse matrices, if the re-
quested column is implicit, the iterator is moved to the first explicit col-
umn following it. If no such column exists, the iterator is exhausted and
GxB_EXHAUSTED is returned. The GxB_colIterator_kseek method al-
ways moves to the kth explicit column, for any matrix. Use
GxB_colIterator_getColIndex, described below, to determine the
column index of the current position.

Precondition: on input, the iterator must have been successfully at-
tached to a matrix via a prior call to GxB_colIterator_attach. Re-
sults are undefined if this precondition is not met.

3. entry iterator:

GrB_Info info = GxB_Matrix_Iterator_seek (iterator, p) ;

GrB_Index pmax = GxB_Matrix_Iterator_getpmax (iterator) ;

GrB_Index p = GxB_Matrix_Iterator_getp (iterator);

The GxB_Matrix_Iterator_seek method moves the iterator to the
given position p, which is in the range 0 to pmax-1, where the value
of pmax is obtained from GxB_Matrix_Iterator_getpmax. For sparse,
hypersparse, and full matrices, pmax is the same as nvals returned by
GrB_Matrix_nvals. For bitmap matrices, pmax is equal to nrows*ncols.

296

If p ≥ pmax, the iterator is exhausted and GxB_EXHAUSTED is returned.
Otherwise, GrB_SUCCESS is returned.

All entries in the matrix are given an ordinal position, p. Seeking to
position p will either move the iterator to that particular position,
or to the next higher position containing an entry if there is entry
at position p. The latter case only occurs for bitmap matrices. Use
GxB_Matrix_Iterator_getp to determine the current position of the
iterator.

Precondition: on input, the iterator must have been successfully at-
tached to a matrix via a prior call to GxB_Matrix_Iterator_attach.
Results are undefined if this precondition is not met.

4. vector iterator:

GrB_Info info = GxB_Vector_Iterator_seek (iterator, p) ;

GrB_Index pmax = GxB_Vector_Iterator_getpmax (iterator) ;

GrB_Index p = GxB_Vector_Iterator_getp (iterator);

The GxB_Vector_Iterator_seek method is identical to the entry it-
erator of a matrix, but applied to a GrB_Vector instead.

Precondition: on input, the iterator must have been successfully at-
tached to a vector via a prior call to GxB_Vector_Iterator_attach.
Results are undefined if this precondition is not met.

14.4 Advancing to the next position

For best performance, the seek methods described above should be used
with care, since some of them require O(log n) time. The fastest method
for changing the position of the iterator is the corresponding next method,
described below for each iterator:

1. row iterator: To move to the next row.

GrB_Info info = GxB_rowIterator_nextRow (iterator) ;

The row iterator is a 2-dimensional iterator, requiring an outer loop and
an inner loop. The outer loop iterates over the rows of the matrix, us-
ing GxB_rowIterator_nextRow to move to the next row. If the matrix

297

is hypersparse, the next row is always an explicit row; implicit rows are
skipped. The return conditions are identical to GxB_rowIterator_seekRow.

Preconditions: on input, the row iterator must already be attached to a
matrix via a prior call to GxB_rowIterator_attach, and the iterator
must be at a specific row, via a prior call to GxB_rowIterator_*seek*

or GxB_rowIterator_nextRow. Results are undefined if these condi-
tions are not met.

2. row iterator: To move to the next entry within a row.

GrB_Info info = GxB_rowIterator_nextCol (iterator) ;

The row iterator is moved to the next entry in the current row. The
method returns GrB_NO_VALUE if the end of the row is reached. The
iterator does not move to the next row in this case. The method returns
GrB_SUCCESS if the iterator has been moved to a specific entry in the
current row.

Preconditions: the same as GxB_rowIterator_nextRow.

3. column iterator: To move to the next column

GrB_Info info = GxB_colIterator_nextCol (iterator) ;

The column iterator is a 2-dimensional iterator, requiring an outer loop
and an inner loop. The outer loop iterates over the columns of the ma-
trix, using GxB_colIterator_nextCol to move to the next column. If
the matrix is hypersparse, the next column is always an explicit col-
umn; implicit columns are skipped. The return conditions are identical
to GxB_colIterator_seekCol.

Preconditions: on input, the column iterator must already be attached
to a matrix via a prior call to GxB_colIterator_attach, and the
iteratormust be at a specific column, via a prior call to GxB_colIterator_*seek*
or GxB_colIterator_nextCol. Results are undefined if these condi-
tions are not met.

4. column iterator: To move to the next entry within a column.

GrB_Info info = GxB_colIterator_nextRow (iterator) ;

298

The column iterator is moved to the next entry in the current column.
The method returns GrB_NO_VALUE if the end of the column is reached.
The iterator does not move to the next column in this case. The method
returns GrB_SUCCESS if the iterator has been moved to a specific entry
in the current column.

Preconditions: the same as GxB_colIterator_nextCol.

5. entry iterator: To move to the next entry.

GrB_Info info = GxB_Matrix_Iterator_next (iterator) ;

This method moves an iterator to the next entry of a matrix. It returns
GrB_SUCCESS if the iterator is at an entry that exists in the matrix, or
GrB_EXHAUSTED otherwise.

Preconditions: on input, the entry iterator must be already attached to
a matrix via GxB_Matrix_Iterator_attach, and the position of the it-
erator must also have been defined by a prior call to GxB_Matrix_Iterator_seek
or GxB_Matrix_Iterator_next. Results are undefined if these condi-
tions are not met.

6. vector iterator: To move to the next entry.

GrB_Info info = GxB_Vector_Iterator_next (iterator) ;

This method moves an iterator to the next entry of a vector. It returns
GrB_SUCCESS if the iterator is at an entry that exists in the vector, or
GrB_EXHAUSTED otherwise.

Preconditions: on input, the iterator must be already attached to a vec-
tor via GxB_Vector_Iterator_attach, and the position of the iterator
must also have been defined by a prior call to GxB_Vector_Iterator_seek
or GxB_Vector_Iterator_next. Results are undefined if these condi-
tions are not met.

14.5 Accessing the indices of the current entry

Once the iterator is attached to a matrix or vector, and is placed in position
at an entry in the matrix or vector, the indices and value of this entry can
be obtained. The methods for accessing the value of the entry are described
in Section 14.6. Accessing the indices is performed with four different sets of
methods, depending on which access pattern is in use, described below:

299

1. row iterator: To get the current row index.

GrB_Index i = GxB_rowIterator_getRowIndex (iterator) ;

The method returns nrows(A) if the iterator is exhausted, or the cur-
rent row index i otherwise. There need not be any entry in the current
row. Zero is returned if the iterator is attached to the matrix but
GxB_rowIterator_*seek* has not been called, but this does not mean
the iterator is positioned at row zero.

Preconditions: on input, the iterator must be already successfully at-
tached to matrix as a row iterator via GxB_rowIterator_attach. Re-
sults are undefined if this condition is not met.

2. row iterator: To get the current column index.

GrB_Index j = GxB_rowIterator_getColIndex (iterator) ;

Preconditions: on input, the iterator must be already successfully at-
tached to matrix as a row iterator via GxB_rowIterator_attach, and
in addition, the row iterator must be positioned at a valid entry present
in the matrix. That is, the last call to GxB_rowIterator_*seek* or
GxB_rowIterator_*next*, must have returned GrB_SUCCESS. Results
are undefined if these conditions are not met.

3. column iterator: To get the current column index.

GrB_Index j = GxB_colIterator_getColIndex (iterator) ;

The method returns ncols(A) if the iterator is exhausted, or the cur-
rent column index j otherwise. There need not be any entry in the
current column. Zero is returned if the iterator is attached to the ma-
trix but GxB_colIterator_*seek* has not been called, but this does
not mean the iterator is positioned at column zero.

Precondition: on input, the iterator must be already successfully at-
tached to matrix as a column iterator via GxB_colIterator_attach.
Results are undefined if this condition is not met.

4. column iterator: To get the current row index.

GrB_Index i = GxB_colIterator_getRowIndex (iterator) ;

300

Preconditions: on input, the iterator must be already successfully at-
tached to matrix as a column iterator via GxB_colIterator_attach,
and in addition, the column iterator must be positioned at a valid entry
present in the matrix. That is, the last call to GxB_colIterator_*seek*
or GxB_colIterator_*next*, must have returned GrB_SUCCESS. Re-
sults are undefined if these conditions are not met.

5. entry iterator: To get the current row and column index.

GrB_Index i, j ;

GxB_Matrix_Iterator_getIndex (iterator, &i, &j) ;

Returns the row and column index of the current entry.

Preconditions: on input, the entry iterator must be already attached to
a matrix via GxB_Matrix_Iterator_attach, and the position of the it-
erator must also have been defined by a prior call to GxB_Matrix_Iterator_seek
or GxB_Matrix_Iterator_next, with a return value of GrB_SUCCESS.
Results are undefined if these conditions are not met.

6. vector iterator: To get the current index.

GrB_Index i = GxB_Vector_Iterator_getIndex (iterator) ;

Returns the index of the current entry.

Preconditions: on input, the entry iterator must be already attached to
a matrix via GxB_Vector_Iterator_attach, and the position of the it-
erator must also have been defined by a prior call to GxB_Vector_Iterator_seek
or GxB_Vector_Iterator_next, with a return value of GrB_SUCCESS.
Results are undefined if these conditions are not met.

14.6 Accessing the value of the current entry

So far, all methods that create or use an iterator have been split into four
sets of methods, for the row, column, or entry iterators attached to a matrix,
or for a vector iterator. Accessing the value is different. All four iterators
use the same set of methods to access the value of their current entry. These
methods return the value of the current entry at the position determined by
the iterator. The return value can of course be typecasted using standard C
syntax once the value is returned to the caller.

301

Preconditions: on input, the prior call to GxB_*Iterator_*seek*, or
GxB_*Iterator_*next* must have returned GrB_SUCCESS, indicating that
the iterator is at a valid current entry for either a matrix or vector. No
typecasting is permitted, in the sense that the method name must match the
type of the matrix or vector. Results are undefined if these conditions are
not met.

// for built-in types:

bool value = GxB_Iterator_get_BOOL (iterator) ;

int8_t value = GxB_Iterator_get_INT8 (iterator) ;

int16_t value = GxB_Iterator_get_INT16 (iterator) ;

int32_t value = GxB_Iterator_get_INT32 (iterator) ;

int64_t value = GxB_Iterator_get_INT64 (iterator) ;

uint8_t value = GxB_Iterator_get_UINT8 (iterator) ;

uint16_t value = GxB_Iterator_get_UINT16 (iterator) ;

uint32_t value = GxB_Iterator_get_UINT32 (iterator) ;

uint64_t value = GxB_Iterator_get_UINT64 (iterator) ;

float value = GxB_Iterator_get_FP32 (iterator) ;

double value = GxB_Iterator_get_FP64 (iterator) ;

GxB_FC32_t value = GxB_Iterator_get_FC32 (iterator) ;

GxB_FC64_t value = GxB_Iterator_get_FC64 (iterator) ;

// for user-defined types:

<type> value ;

GxB_Iterator_get_UDT (iterator, (void *) &value) ;

302

14.7 Example: row iterator for a matrix

The following example uses a row iterator to access all of the entries in a
matrix A of type GrB_FP64. Note the inner and outer loops. The outer loop
iterates over all rows of the matrix. The inner loop iterates over all entries
in the row i. This access pattern requires the matrix to be held by-row, but
otherwise it works for any matrix. If the matrix is held by-column, then use
the column iterator methods instead.

// create an iterator

GxB_Iterator iterator ;

GxB_Iterator_new (&iterator) ;

// attach it to the matrix A, known to be type GrB_FP64

GrB_Info info = GxB_rowIterator_attach (iterator, A, NULL) ;

if (info < 0) { handle the failure ... }

// seek to A(0,:)

info = GxB_rowIterator_seekRow (iterator, 0) ;

while (info != GxB_EXHAUSTED)

{

// iterate over entries in A(i,:)

GrB_Index i = GxB_rowIterator_getRowIndex (iterator) ;

while (info == GrB_SUCCESS)

{

// get the entry A(i,j)

GrB_Index j = GxB_rowIterator_getColIndex (iterator) ;

double aij = GxB_Iterator_get_FP64 (iterator) ;

// move to the next entry in A(i,:)

info = GxB_rowIterator_nextCol (iterator) ;

}

// move to the next row, A(i+1,:), or a subsequent one if i+1 is implicit

info = GxB_rowIterator_nextRow (iterator) ;

}

GrB_free (&iterator) ;

303

14.8 Example: column iterator for a matrix

The column iterator is analgous to the row iterator.
The following example uses a column iterator to access all of the entries

in a matrix A of type GrB_FP64. The outer loop iterates over all columns of
the matrix. The inner loop iterates over all entries in the column j. This
access pattern requires the matrix to be held by-column, but otherwise it
works for any matrix. If the matrix is held by-row, then use the row iterator
methods instead.

// create an iterator

GxB_Iterator iterator ;

GxB_Iterator_new (&iterator) ;

// attach it to the matrix A, known to be type GrB_FP64

GrB_Info info = GxB_colIterator_attach (iterator, A, NULL) ;

// seek to A(:,0)

info = GxB_colIterator_seekCol (iterator, 0) ;

while (info != GxB_EXHAUSTED)

{

// iterate over entries in A(:,j)

GrB_Index j = GxB_colIterator_getColIndex (iterator) ;

while (info == GrB_SUCCESS)

{

// get the entry A(i,j)

GrB_Index i = GxB_colIterator_getRowIndex (iterator) ;

double aij = GxB_Iterator_get_FP64 (iterator) ;

// move to the next entry in A(:,j)

info = GxB_colIterator_nextRow (iterator) ;

}

// move to the next column, A(:,j+1), or a subsequent one if j+1 is implicit

info = GxB_colIterator_nextCol (iterator) ;

}

GrB_free (&iterator) ;

304

14.9 Example: entry iterator for a matrix

The entry iterator allows for a simpler access pattern, with a single loop, but
using a row or column iterator is faster. The method works for any matrix.

// create an iterator

GxB_Iterator iterator ;

GxB_Iterator_new (&iterator) ;

// attach it to the matrix A, known to be type GrB_FP64

GrB_Info info = GxB_Matrix_Iterator_attach (iterator, A, NULL) ;

if (info < 0) { handle the failure ... }

// seek to the first entry

info = GxB_Matrix_Iterator_seek (iterator, 0) ;

while (info != GxB_EXHAUSTED)

{

// get the entry A(i,j)

GrB_Index i, j ;

GxB_Matrix_Iterator_getIndex (iterator, &i, &j) ;

double aij = GxB_Iterator_get_FP64 (iterator) ;

// move to the next entry in A

info = GxB_Matrix_Iterator_next (iterator) ;

}

GrB_free (&iterator) ;

14.10 Example: vector iterator

A vector iterator is used much like an entry iterator for a matrix.

// create an iterator

GxB_Iterator iterator ;

GxB_Iterator_new (&iterator) ;

// attach it to the vector v, known to be type GrB_FP64

GrB_Info info = GxB_Vector_Iterator_attach (iterator, v, NULL) ;

if (info < 0) { handle the failure ... }

// seek to the first entry

info = GxB_Vector_Iterator_seek (iterator, 0) ;

while (info != GxB_EXHAUSTED)

{

// get the entry v(i)

GrB_Index i = GxB_Vector_Iterator_getIndex (iterator) ;

double vi = GxB_Iterator_get_FP64 (iterator) ;

// move to the next entry in v

info = GxB_Vector_Iterator_next (iterator) ;

}

GrB_free (&iterator) ;

305

14.11 Performance

I have benchmarked the performance of the row and column iterators to
compute y=0 and then y+=A*x where y is a dense vector and A is a sparse
matrix, using a single thread. The row and column iterators are very fast,
sometimes only 1% slower than calling GrB_mxv to compute the same thing
(also assuming a single thread), for large problems. For sparse matrices that
average just 1 or 2 entries per row, the row iterator can be about 30% slower
than GrB_mxv, likely because of the slightly higher complexity of moving from
one row to the next using these methods.

It is possible to split up the problem for multiple user threads, each with
its own iterator. Given the low overhead of the row and column iterator for a
single thread, this should be very fast. Care must be taken to ensure a good
load balance. Simply spliting up the rows of a matrix and giving the same
number of rows to each user thread can result in imbalanced work. This is
handled internally in GrB_* methods, but enabling parallelism when using
iterators is the responsibility of the user application.

The entry iterators are easier to use but harder to implement. The meth-
ods must internally fuse both inner and outer loops so that the user applica-
tion can use a single loop. As a result, the computation y+=A*x can be up to
4x slower (about 2x typical) than when using GrB_mxv with a single thread.

To obtain the best performace possible, many of the iterator methods are
implemented as macros in GraphBLAS.h. Using macros is the default, giving
typical C and C++ applications access to the fastest methods possible.

To ensure access to these methods when not using the macros, these
methods are also defined as regular functions that appear in the compiled
libgraphblas.so library with the same name as the macros. Applica-
tions that cannot use the macro versions can #undef the macros after the
#include <GraphBLAS.h> statement, and then they would access the reg-
ular compiled functions in libgraphblas.so. This non-macro approach is
not the default, and the iterator methods may be slightly slower.

306

15 Iso-Valued Matrices and Vectors

The GraphBLAS C API states that the entries in all GrB_Matrix and GrB_Vector
objects have a numerical value, with either a built-in or user-defined type.
Representing an unweighted graph requires a value to be placed on each edge,
typically aij = 1. Adding a structure-only data type would not mix well with
the rest of GraphBLAS, where all operators, monoids, and semirings need to
operate on a value, of some data type. And yet unweighted graphs are very
important in graph algorithms.

The solution is simple, and exploiting it in SuiteSparse:GraphBLAS re-
quires nearly no extensions to the GraphBLAS C API. SuiteSparse:GraphBLAS
can often detect when the user application is creating a matrix or vector
where all entries in the sparsity pattern take on the same numerical value.

For example, C⟨C⟩ = 1, when the mask is structural, sets all entries in
C to the value 1. SuiteSparse:GraphBLAS detects this, and performs this
assignment in O(1) time. It stores a single copy of this “iso-value” and sets
an internal flag in the opaque data structure for C, which states that all
entries in the pattern of C are equal to 1. This saves both time and memory
and allows for the efficient representation of sparse adjacency matrices of
unweighted graphs, yet does not change the C API. To the user application,
it still appears that C has nvals(C) entries, all equal to 1.

Creating and operating on iso-valued matrices (or just iso matrices for
short) is significantly faster than creating matrices with different data values.
A matrix that is iso requires only O(1) space for its numerical values. The
sparse and hypersparse formats require an additional O(n+e) or O(e) integer
space to hold the pattern of an n-by-n matrix C, respectively, and a matrix C

in bitmap format requires O(n2) space for the bitmap. A full matrix requires
no integer storage, so a matrix that is both iso and full requires only O(1)
space, regardless of its dimension.

The sections below a describe the methods that can be used to create iso
matrices and vectors. Let a, b, and c denote the iso values of A, B, and C,
respectively.

15.1 Using iso matrices and vectors in a graph algo-
rithm

There are two primary useful ways to use iso-valued matrices and vectors:
(1) as iso sparse/hypersparse adjacency matrices for unweighted graphs, and

307

(2) as iso full matrices or vectors used with operations that do not need to
access all of the content of the iso full matrix or vector.

In the first use case, simply create a GrB_Matrix with values that are all
the same (those in the sparsity pattern). The GxB_Matrix_build_Scalar

method can be used for this, since it guarantees that the time and work
spent on the numerical part of the array is only O(1). The method still
must spend O(e) or O(e log e) time on the integer arrays that represent the
sparsity pattern, but the reduction in time and work on the numerical part
of the matrix will improve performance.

The use of GxB_Matrix_build_Scalar is optional. Matrices can also be
constructed with GrB* methods. In particular, GrB_Matrix_build_* can be
used. It first builds a non-iso matrix and then checks if all of the values are
the same, after assembling any duplicate entries. This does not save time or
memory for the construction of the matrix itself, but it will lead to savings
in time and memory later on, when the matrix is used.

To ensure a matrix C is iso-valued, simply use GrB_assign to compute
C<C,struct>=1, or assign whatever value of scalar you wish. It is essential
to use a structural mask. Otherwise, it is not clear that all entries in C will
be assigned the same value. The following code takes O(1) time, and it resets
the size of the numerical part of the C matrix to be O(1) in size:

bool scalar = true ;

GrB_Matrix_assign (C, C, NULL, scalar, GrB_ALL, nrows, GrB_ALL, ncols,

GrB_DESC_S) ;

The MATLAB/Octave analog of the code above is C=spones(C).
The second case for where iso matrices and vectors are useful is to use

them with operations that do not necessarily access all of their content. Sup-
pose you have a matrix A of arbitrarily large dimension (say n-by-n where
n=2^60, of type GrB_FP64). A matrix this large can be represented by Suite-
Sparse:GraphBLAS, but only in a hypersparse form.

Now, suppose you wish to compute the maximum value in each row,
reducing the matrix to a vector. This can be done with GrB_reduce:

GrB_Vector_new (&v, GrB_FP64, n) ;

GrB_reduce (v, NULL, GrB_MAX_MONOID_FP64, A, NULL) ;

It can also be done with GrB_mxv, by creating an iso full vector x. The
creation of x takes O(1) time and memory, and the GrB_mxv computation
takes O(e) time (with modest assumptions; if A needs to be transposed the
time would be O(e log e)).

308

GrB_Vector_new (&v, GrB_FP64, n) ;

GrB_Vector_new (&x, GrB_FP64, n) ;

GrB_assign (x, NULL, NULL, 1, GrB_ALL, n, NULL) ;

GrB_mxv (v, NULL, NULL, GrB_MAX_FIRST_SEMIRING_FP64, A, x, NULL) ;

The above computations are identical in SuiteSparse:GraphBLAS. Inter-
nally, GrB_reduce creates x and calls GrB_mxv. Using GrB_mxm directly gives
the user application additional flexibility in creating new computations that
exploit the multiplicative operator in the semiring. GrB_reduce always uses
the FIRST operator in its semiring, but any other binary operator can be
used instead when using GrB_mxv.

15.2 Iso matrices from matrix multiplication

Consider GrB_mxm, GrB_mxv, and GrB_vxm, and let C=A*B, where no mask is
present, or C<M>=A*B where C is initially empty. If C is not initially empty,
then these rules apply to a temporary matrix T<M>=A*B, which is initially
empty and is then assigned to C via C<M>=T.

The iso property of C is determined with the following rules, where the
first rule that fits defines the property and value of C.

� If the semiring includes a index-based multiplicative operator (GxB_FIRSTI,
GrB_SECONDI, and related operators), then C is never iso.

� Define an iso-monoid as a built-in monoid with the property that re-
ducing a set of n > 1 identical values x returns the same value x.
These are the MIN MAX LOR LAND BOR BAND and ANY monoids. All other
monoids are not iso monoids: PLUS, TIMES, LXNOR, EQ, BXOR, BXNOR, and
all user-defined monoids. Currently, there is no mechanism for telling
SuiteSparse:GraphBLAS that a user-defined monoid is an iso-monoid.

� If the multiplicative op is PAIR (same as ONEB), and the monoid is an
iso-monoid, or the EQ or TIMES monoids, then C is iso with a value of
1.

� If both B and the monoid are iso, and the multiplicative op is SECOND
or ANY, then C is iso with a value of b.

� If both A and the monoid are iso, and the multiplicative op is FIRST or
ANY, then C is iso with a value of a.

309

� If A, B, and the monoid are all iso, then C is iso, with a value c = f(a, b),
where f is any multiplicative op (including user-defined, which assumes
that a user-defined f has no side effects).

� If A and B are both iso and full (all entries present, regardless of the
format of the matrices), then C is iso and full. Its iso value is computed
in O(log(n)) time, via a reduction of n copies of the value t = f(a, b)
to a scalar. The storage required to represent C is just O(1), regardless
of its dimension. Technically, the PLUS monoid could be computed as
c = nt in O(1) time, but the log-time reduction works for any monoid,
including user-defined ones.

� Otherwise, C is not iso.

15.3 Iso matrices from eWiseMult and kronecker

Consider GrB_eWiseMult. Let C=A.*B, or C<M>=A.*B with any mask and
where C is initially empty, where .* denotes a binary operator f(x, y) applied
with eWiseMult. These rules also apply to GrB_kronecker.

� If the operator is index-based (GxB_FIRSTI and related) then C is not
iso.

� If the op is PAIR (same as ONEB), then C is iso with c = 1.

� If B is iso and the op is SECOND or ANY, then C is iso with c = b.

� If A is iso and the op is FIRST or ANY, then C is iso with c = a.

� If both A and B are iso, then C is iso with c = f(a, b).

� Otherwise, C is not iso.

15.4 Iso matrices from eWiseAdd

Consider GrB_eWiseAdd, and also the accumulator phase of C<M>+=T when
an accumulator operator is present. Let C=A+B, or C<M>=A+B with any mask
and where C is initially empty.

� If both A and B are full (all entries present), then the rules for eWiseMult
in Section 15.3 are used instead.

310

� If the operator is index-based (GxB_FIRSTI and related) then C is not
iso.

� If a and b differ (when typecasted to the type of C), then C is not iso.

� If c = f(a, b) = a = b holds, then C is iso, where f(a, b) is the operator.

� Otherwise, C is not iso.

15.5 Iso matrices from eWiseUnion

GxB_eWiseUnion is very similar to GrB_eWiseAdd, but the rules for when the
result is iso-valued are very different.

� If both A and B are full (all entries present), then the rules for eWiseMult
in Section 15.3 are used instead.

� If the operator is index-based (GxB_FIRSTI and related) then C is not
iso.

� If the op is PAIR (same as ONEB), then C is iso with c = 1.

� If B is iso and the op is SECOND or ANY, and the input scalar beta

matches b (the iso-value of B), then C is iso with c = b.

� If A is iso and the op is FIRST or ANY, and the input scalar alpha

matches a (the iso-value of A), then C is iso with c = a.

� If both A and B are iso, and f(a, b) = f(α, b) = f(a, β), then C is iso
with c = f(a, b).

� Otherwise, C is not iso.

15.6 Reducing iso matrices to a scalar or vector

If A is iso with e entries, reducing it to a scalar takes O(log(e)) time, regardless
of the monoid used to reduce the matrix to a scalar. Reducing A to a vector
c is the same as the matrix-vector multiply c=A*x or c=A’*x, depending on
the descriptor, where x is an iso full vector (refer to Section 15.2).

311

15.7 Iso matrices from apply

Let C=f(A) denote the application of a unary operator f, and let C=f(A,s)
and C=f(s,A) denote the application of a binary operator with s a scalar.

� If the operator is index-based (GxB_POSITION*, GxB_FIRSTI, and re-
lated) then C is not iso.

� If the operator is ONE or PAIR (same as ONEB), then C iso with c = 1.

� If the operator is FIRST or ANY with C=f(s,A), then C iso with c = s.

� If the operator is SECOND or ANY with C=f(A,s), then C iso with c = s.

� If A is iso then C is iso, with the following value of c:

– If the op is IDENTITY, then c = a.

– If the op is unary with C=f(A), then c = f(a).

– If the op is binary with C=f(s,A), then c = f(s, a).

– If the op is binary with C=f(A,s), then c = f(a, s).

� Otherwise, C is not iso.

15.8 Iso matrices from select

Let C=select(A) denote the application of a GrB_IndexUnaryOp operator in
GrB_select.

� If A is iso, then C is iso with c = a.

� If the operator is any GrB_VALUE*_BOOL operator, with no typecasting,
and the test is true only for a single boolean value, then C is iso.

� If the operator is GrB_VALUEEQ_*, with no typecasting, then C is iso,
with c = t where t is the value of the scalar y.

� If the operator is GrB_VALUELE_UINT*, with no typecasting, and the
scalar y is zero, then C is iso with c = 0.

� Otherwise, C is not iso.

312

15.9 Iso matrices from assign and subassign

These rules are somewhat complex. Consider the assignment C<M>(I,J)=...
with GrB_assign. Internally, this assignment is converted into C(I,J)<M(I,J)>=...
and then GxB_subassign is used. Thus, all of the rules below assume the
form C(I,J)<M>=... where M has the same size as the submatrix C(I,J).

15.9.1 Assignment with no accumulator operator

If no accumulator operator is present, the following rules are used.

� For matrix assignment, A must be iso. For scalar assignment, the single
scalar is implicitly expanded into an iso matrix A of the right size. If
these rules do not hold, C is not iso.

� If A is not iso, or if C is not iso on input, then C is not iso on output.

� If C is iso or empty on input, and A is iso (or scalar assignment is begin
performed) and the iso values c and a (or the scalar s) match, then the
following forms of assignment result in an iso matrix C on output:

– C(I,J) = scalar

– C(I,J)<M> = scalar

– C(I,J)<!M> = scalar

– C(I,J)<M,replace> = scalar

– C(I,J)<!M,replace> = scalar

– C(I,J) = A

– C(I,J)<M> = A

– C(I,J)<!M> = A

– C(I,J)<M,replace> = A

– C(I,J)<!M,replace> = A

� For these forms of assignment, C is always iso on output, regardless of
its iso property on input:

– C = scalar

313

– C<M,struct>=scalar; C empty on input.

– C<C,struct>=scalar

� For these forms of assignment, C is always iso on output if A is iso:

– C = A

– C<M,str> = A; C empty on input.

15.9.2 Assignment with an accumulator operator

If an accumulator operator is present, the following rules are used. Index-
based operators (GxB_FIRSTI and related) cannot be used as accumulator
operators, so these rules do not consider that case.

� For matrix assignment, A must be iso. For scalar assignment, the single
scalar is implicitly expanded into an iso matrix A of the right size. If
these rules do not hold, C is not iso.

� For these forms of assignment C is iso if C is empty on input, or if
c = c+ a for the where a is the iso value of A or the value of the scalar
for scalar assignment.

– C(I,J) += scalar

– C(I,J)<M> += scalar

– C(I,J)<!M> += scalar

– C(I,J)<M,replace> += scalar

– C(I,J)<!M,replace> += scalar

– C(I,J)<M,replace> += A

– C(I,J)<!M,replace> += A

– C(I,J) += A

– C(I,J)<M> += A

– C(I,J)<!M> += A

– C += A

314

15.10 Iso matrices from build methods

GxB_Matrix_build_Scalar and GxB_Vector_build_Scalar always construct
an iso matrix/vector.

GrB_Matrix_build and GrB_Vector_build can also construct iso matri-
ces and vectors. A non-iso matrix/vector is constructed first, and then the
entries are checked to see if they are all equal. The resulting iso-valued ma-
trix/vector will be efficient to use and will use less memory than a non-iso ma-
trix/vector. However, constructing an iso matrix/vector with GrB_Matrix_build
and GrB_Vector_build will take more time and memory than constructing
the matrix/vector with GxB_Matrix_build_Scalar or GxB_Vector_build_Scalar.

15.11 Iso matrices from other methods

� For GrB_Matrix_dup and GrB_Vector_dup, the output matrix/vector
has the same iso property as the input matrix/vector.

� GrB_*_setElement_* preserves the iso property of the matrix/vector
it modifies, if the input scalar is equal to the iso value of the ma-
trix/vector. If the matrix or vector has no entries, the first call to
setElement makes it iso. This allows a sequence of setElement calls
with the same scalar value to create an entire iso matrix or vector, if
starting from an empty matrix or vector.

� GxB_Matrix_concat constructs an iso matrix as its result if all input
tiles are either empty or iso.

� GxB_Matrix_split constructs its output tiles as iso if its input matrix
is iso.

� GxB_Matrix_diag and GrB_Matrix_diag construct an iso matrix if its
input vector is iso.

� GxB_Vector_diag constructs an iso vector if its input matrix is iso.

� GrB_*extract constructs an iso matrix/vector if its input matrix/vector
is iso.

� GrB_transpose constructs an iso matrix if its input is iso.

� The GxB_Container methods preserve the iso property of their matri-
ces/vectors.

315

15.12 Iso matrices not exploited

There are many cases where an matrix may have the iso property but it is not
detected by SuiteSparse:GraphBLAS. For example, if A is non-iso, C=A(I,J)
from GrB_extract may be iso, if all entries in the extracted submatrix have
the same value. Future versions of SuiteSparse:GraphBLAS may extend the
rules described in this section to detect these cases.

316

16 Performance

Getting the best performance out of an algorithm that relies on GraphBLAS
can depend on many factors. This section describes some of the possible
performance pitfalls you can hit when using SuiteSparse:GraphBLAS, and
how to avoid them (or at least know when you’ve encountered them).

16.1 The burble is your friend

Turn on the burble with GrB_set (GrB_GLOBAL, true, GxB_BURBLE). You
will get a single line of output from each (significant) call to GraphBLAS.
The burble output can help you detect when you are likely using sub-optimal
methods, as described in the next sections. When the JIT is in use the burble
reports when a JIT kernel is run (which is quick), loaded for the first time
(which takes a small amount of time), and when a JIT kernels is compiled
(which can take a few tenths of a second or more). The compiler command
is printed in full. If you encounter a compiler error, you can cut-and-paste
the compiler command while outside of your application to help track down
the compiler error.

16.2 Data types and typecasting: use the JIT

If the JIT is disabled, avoid mixing data types and relying on typecasting as
much as possible. SuiteSparse:GraphBLAS has a set of highly-tuned kernels
for each data type, and many operators and semirings, but there are too
many combinations to generate ahead of time. If typecasting is required, or
if SuiteSparse:GraphBLAS does not have a kernel for the specific operator or
semiring, the word generic will appear in the burble. The generic methods
rely on function pointers for each operation on every scalar, so they are slow.
Enabling the JIT avoids this problem, since GraphBLAS can then compile
kernel specific to the types used.

Without the JIT, the only time that typecasting is fast is when computing
C=A via GrB_assign or GrB_apply, where the data types of C and A can differ.
In this case, one of 132 = 169 kernels are called, each of which performs the
specific typecasting requested, without relying on function pointers.

317

16.3 Matrix data structures: sparse, hypersparse, bitmap,
or full

SuiteSparse:GraphBLAS tries to automatically determine the best data struc-
ture for your matrices and vectors, selecting between sparse, hypersparse,
bitmap, and full formats. By default, all 4 formats can be used. A matrix
typically starts out hypersparse when it is created by GrB_Matrix_new, and
then changes during its lifetime, possibly taking on all four different formats
at different times. This can be modified via GrB_set. For example, this line
of code:

GrB_set (A, GxB_SPARSE + GxB_BITMAP, GxB_SPARSITY_CONTROL) ;

tells SuiteSparse that the matrix A can be held in either sparse or bitmap
format (at its discretion), but not hypersparse or full. The bitmap format
will be used if the matrix has enough entries, or sparse otherwise. Sometimes
this selection is best controlled by the user algorithm, so a single format can
be requested:

GrB_set (A, GxB_SPARSE, GxB_SPARSITY_CONTROL) ;

This ensures that SuiteSparse will primarily use the sparse format. This is
still just a hint, however. The data structure is opaque and SuiteSparse is free
to choose otherwise. In particular, if you insist on using only the GxB_FULL

format, then that format is used when all entries are present. However, if the
matrix is not actually full with all entries present, then the bitmap format
is used instead. The full format does not preserve the sparsity structure in
this case. Any GraphBLAS library must preserve the proper structure, per
the C Specification. This is critical in a graph algorithm, since an edge (i, j)
of weight zero, say, is not the same as no edge (i, j) at all.

16.4 Matrix formats: by row or by column, or using
the transpose of a matrix

By default, SuiteSparse uses a simple rule: all matrices are held by row,
unless the consist of a single column, in which case they are held by col-
umn. All vectors are treated as if they are n-by-1 matrices with a single
column. Changing formats from row-oriented to column-oriented can have

318

significant performance implications, so SuiteSparse never tries to outguess
the application. It just uses this simple rule.

However, there are cases where changing the format can greatly improve
performance. There are two ways to handle this, which in the end are equiva-
lent in the SuiteSparse internals. You can change the format (row to column
oriented, or visa versa), or work with the explicit transpose of a matrix in
the same storage orientation.

There are cases where SuiteSparse must explicitly transpose an input
matrix, or the output matrix, in order to perform a computation. For ex-
ample, if all matrices are held in row-oriented fashion, SuiteSparse does not
have a method for computing C=A’*B, where A is transposed. Thus, Suite-
Sparse either computes a temporary transpose of its input matrix AT=A and
then C=AT*B, or it swaps the computations, performing C=(B’*A)’, which
requires an explicit transpose of BT=B, and a transpose of the final result to
obtain C.

These temporary transposes are costly to compute, taking time and mem-
ory. They are not kept, but are discarded when the method returns to the
user application. If you see the term transpose in the burble output, and
if you need to perform this computation many times, try constructing your
own explicit transpose, say AT=A’, via GrB_transpose, or create a copy of
A but held in another orientation via GrB_set. For example, assuming the
default matrix format is by-row, and that A is m-by-n of type GrB_FP32:

// method 1: AT = A’

GrB_Matrix_new (AT, GrB_FP32, n, m) ;

GrB_transpose (AT, NULL, NULL, A, NULL) ;

// method 2: A2 = A but held by column instead of by row

// note: doing the set before the assign is faster than the reverse

GrB_Matrix_new (A2, GrB_FP32, m, n) ;

GrB_set (A2, GrB_COLMAJOR, GrB_STORAGE_ORIENTATION_HINT) ;

GrB_assign (A2, NULL, NULL, A, GrB_ALL, m, GrB_ALL, n, NULL) ;

Internally, the data structure for AT and A2 are nearly identical (that
is, the tranpose of A held in row format is the same as A held in column
format). Using either of them in subsequent calls to GraphBLAS will allow
SuiteSparse to avoid computing an explicit transpose. The two matrices AT
and A2 do differ in one very significant way: their dimensions are different,
and they behave differement mathematically. Computing C=A’*B using these
matrices would differ:

319

// method 1: C=A’*B using AT

GrB_mxm (C, NULL, NULL, semiring, AT, B, NULL) ;

// method 2: C=A’*B using A2

GrB_mxm (C, NULL, NULL, semiring, A2, B, GrB_DESC_T0) ;

The first method computes C=AT*B. The second method computes C=A2’*B,
but the result of both computations is the same, and internally the same ker-
nels will be used.

16.5 Push/pull optimization

Closely related to the discussion above on when to use a matrix or its trans-
pose is the exploitation of “push/pull” direction optimization. In linear al-
gebraic terms, this is simply deciding whether to multiply by the matrix or
its transpose. Examples can be see in the BFS and Betweeness-Centrality
methods of LAGraph. Here is the BFS kernel:

int sparsity = do_push ? GxB_SPARSE : GxB_BITMAP ;

GrB_set (q, sparsity, GxB_SPARSITY_CONTROL) ;

if (do_push)

{

// q’{!pi} = q’*A

GrB_vxm (q, pi, NULL, semiring, q, A, GrB_DESC_RSC) ;

}

else

{

// q{!pi} = AT*q

GrB_mxv (q, pi, NULL, semiring, AT, q, GrB_DESC_RSC) ;

}

The call to GrB_set is optional, since SuiteSparse will likely already de-
termine that a bitmap format will work best when the frontier q has many
entries, which is also when the pull step is fastest. The push step relies on a
sparse vector times sparse matrix method originally due to Gustavson. The
output is computed as a set union of all rows A(i,:) where q(i) is present
on input. This set union is very fast when q is very sparse. The pull step
relies on a sequence of dot product computations, one per possible entry in
the output q, and it uses the matrix AT which is a row-oriented copy of the
explicit transpose of the adjacency matrix A.

Mathematically, the results of the two methods are identical, but inter-
nally, the data format of the input matrices is very different (using A held

320

by row, or AT held by row which is the same as a copy of A that is held by
column), and the algorithms used are very different.

16.6 Computing with full matrices and vectors

Sometimes the best approach to getting the highest performance is to use
dense vectors, and occassionaly dense matrices are tall-and-thin or short-
and-fat. Packages such as Julia, Octave, or MATLAB, when dealing with the
conventional plus-times semirings, assume that multiplying a sparse matrix
A times a dense vector x, y=A*x, will result in a dense vector y. This is
not always the case, however. GraphBLAS must always return a result that
respects the sparsity structure of the output matrix or vector. If the ith row
of A has no entries then y(i) must not appear as an entry in the vector y,
so it cannot be held as a full vector. As a result, the following computation
can be slower than it could be:

GrB_mxv (y, NULL, NULL, semiring, A, x, NULL) ;

SuiteSparse must do extra work to compute the sparsity of this vector y,
but if this is not needed, and y can be padded with zeros (or the identity
value of the monoid, to be precise), a faster method can be used, by relying
on the accumulator. Instead of computing y=A*x, set all entries of y to zero
first, and then compute y+=A*x where the accumulator operator and type
matches the monoid of the semiring. SuiteSparse has special kernels for this
case; you can see them in the burble as F+=S*F for example.

// y = 0

GrB_assign (y, NULL, NULL, 0, GrB_ALL, n, NULL) ;

// y += A*x

GrB_mxv (y, NULL, GrB_PLUS_FP32, GrB_PLUS_TIMES_SEMIRING_FP32, A, x, NULL) ;

You can see this computation in the LAGraph PageRank method, where
all entries of r are set to the teleport scalar first.

for (iters = 0 ; iters < itermax && rdiff > tol ; iters++)

{

// swap t and r ; now t is the old score

GrB_Vector temp = t ; t = r ; r = temp ;

// w = t ./ d

GrB_eWiseMult (w, NULL, NULL, GrB_DIV_FP32, t, d, NULL) ;

// r = teleport

321

GrB_assign (r, NULL, NULL, teleport, GrB_ALL, n, NULL) ;

// r += A’*w

GrB_mxv (r, NULL, GrB_PLUS_FP32, LAGraph_plus_second_fp32, AT, w, NULL) ;

// t -= r

GrB_assign (t, NULL, GrB_MINUS_FP32, r, GrB_ALL, n, NULL) ;

// t = abs (t)

GrB_apply (t, NULL, NULL, GrB_ABS_FP32, t, NULL) ;

// rdiff = sum (t)

GrB_reduce (&rdiff, NULL, GrB_PLUS_MONOID_FP32, t, NULL) ;

}

SuiteSparse exploits the iso-valued property of the scalar-to-vector assign-
ment of y=0, or r=teleport, and performs these assignments in O(1) time
and space. Because the r vector start out as full on input to GrB_mxv, and
because there is an accumulatr with no mask, no entries in the input/output
vector r will be deleted, even if A has empty rows. The call to GrB_mxv ex-
ploits this, and is able to use a fast kernel for this computation. SuiteSparse
does not need to compute the sparsity pattern of the vector r.

16.7 Iso-valued matrices and vectors

Using iso-valued matrices and vectors is always faster than using matrices
and vectors whose entries can have different values. Iso-valued matrices are
very important in graph algorithms. For example, an unweighted graph is
best represented as an iso-valued sparse matrix, and unweighted graphs are
very common. The burble output, GxB_print, or GrB_get can all be used
to report whether or not your matrix or vector is iso-valued.

Sometimes a matrix or vector may have values that are all the same, but
SuiteSparse hasn’t detected this. If this occurs, you can force a matrix or
vector to be iso-valued by assigning a single scalar to all its entries.

// C<s(C)> = 3.14159

GrB_assign (C, C, NULL, 3.14159, GrB_ALL, m, GrB_ALL, n, GrB_DESC_S) ;

The matrix C is used as its own mask. The descriptor is essential here,
telling the mask to be used in a structural sense, without regard to the values
of the entries in the mask. This assignment sets all entries that already exist
in C to be equal to a single value, 3.14159. The sparsity structure of C does
not change. Of course, any scalar can be used; the value 1 is common for
unweighted graphs. SuiteSparse:GraphBLAS performs the above assignment

322

in O(1) time and space, independent of the dimension of C or the number of
entries in contains.

16.8 User-defined types and operators: use the JIT

If the JIT is disabled, these will be slow. With the JIT enabled, data types
and operators are just as fast as built-in types and operators. A CUDA JIT
for the GPU is in progress, collaboration with Joe Eaton and Corey Nolet.
A SYCL/OpenCL JIT is under consideration, but work has not yet been
started.

16.9 About NUMA systems

I have tested this package extensively on multicore single-socket systems, but
have not yet optimized it for multi-socket systems with a NUMA architecture.
That will be done in a future release. If you publish benchmarks with this
package, please state the SuiteSparse:GraphBLAS version, and a caveat if
appropriate. If you see significant performance issues when going from a
single-socket to multi-socket system, I would like to hear from you so I can
look into it.

323

17 Examples

Several examples of how to use GraphBLAS are listed below. They all ap-
pear in the Demo folder of SuiteSparse:GraphBLAS. Programs in the Demo

folder are meant as simple examples; for the fastest methods, see LAgraph
(Section 17.1).

1. creating a random matrix

2. creating a finite-element matrix

3. reading a matrix from a file

4. complex numbers as a user-defined type

5. matrix import/export

Additional examples appear in the newly created LAGraph project, cur-
rently in progress.

17.1 LAGraph

The LAGraph project is a community-wide effort to create graph algorithms
based on GraphBLAS (any implementation of the API, not just SuiteSparse:
GraphBLAS). Some of the algorithms and utilities in LAGraph are listed
in the table below. Many additional algorithms are planned. Refer to
https://github.com/GraphBLAS/LAGraph for a current list of algorithms. All
functions in the Demo/ folder in SuiteSparse:GraphBLAS will eventually be
translated into algorithms or utilities for LAGraph, and then removed from
GraphBLAS/Demo.

To use LAGraph with SuiteSparse:GraphBLAS, place the two folders
LAGraph and GraphBLAS in the same parent directory. This allows the cmake
script in LAGraph to find the copy of GraphBLAS. Alternatively, the Graph-
BLAS source could be placed anywhere, as long as sudo make install is
performed.

17.2 Creating a random matrix

The random_matrix function in the Demo folder generates a random matrix
with a specified dimension and number of entries, either symmetric or un-
symmetric, and with or without self-edges (diagonal entries in the matrix).

324

https://github.com/GraphBLAS/LAGraph

It relies on simple_rand* functions in the Demo folder to provide a portable
random number generator that creates the same sequence on any computer
and operating system.

random_matrix can use one of two methods: GrB_Matrix_setElement

and GrB_Matrix_build. The former method is very simple to use:

GrB_Matrix_new (&A, GrB_FP64, nrows, ncols) ;

for (int64_t k = 0 ; k < ntuples ; k++)

{

GrB_Index i = simple_rand_i () % nrows ;

GrB_Index j = simple_rand_i () % ncols ;

if (no_self_edges && (i == j)) continue ;

double x = simple_rand_x () ;

// A (i,j) = x

GrB_Matrix_setElement (A, x, i, j) ;

if (make_symmetric)

{

// A (j,i) = x

GrB_Matrix_setElement (A, x, j, i) ;

}

}

The above code can generate a million-by-million sparse double matrix
with 200 million entries in 66 seconds (6 seconds of which is the time to
generate the random i, j, and x), including the time to finish all pending
computations. The user application does not need to create a list of all
the tuples, nor does it need to know how many entries will appear in the
matrix. It just starts from an empty matrix and adds them one at a time in
arbitrary order. GraphBLAS handles the rest. This method is not feasible
in MATLAB.

The next method uses GrB_Matrix_build. It is more complex to use
than setElement since it requires the user application to allocate and fill the
tuple lists, and it requires knowledge of how many entries will appear in the
matrix, or at least a good upper bound, before the matrix is constructed. It
is slightly faster, creating the same matrix in 60 seconds, 51 seconds of which
is spent in GrB_Matrix_build.

GrB_Index *I, *J ;

double *X ;

int64_t s = ((make_symmetric) ? 2 : 1) * nedges + 1 ;

I = malloc (s * sizeof (GrB_Index)) ;

J = malloc (s * sizeof (GrB_Index)) ;

325

X = malloc (s * sizeof (double)) ;

if (I == NULL || J == NULL || X == NULL)

{

// out of memory

if (I != NULL) free (I) ;

if (J != NULL) free (J) ;

if (X != NULL) free (X) ;

return (GrB_OUT_OF_MEMORY) ;

}

int64_t ntuples = 0 ;

for (int64_t k = 0 ; k < nedges ; k++)

{

GrB_Index i = simple_rand_i () % nrows ;

GrB_Index j = simple_rand_i () % ncols ;

if (no_self_edges && (i == j)) continue ;

double x = simple_rand_x () ;

// A (i,j) = x

I [ntuples] = i ;

J [ntuples] = j ;

X [ntuples] = x ;

ntuples++ ;

if (make_symmetric)

{

// A (j,i) = x

I [ntuples] = j ;

J [ntuples] = i ;

X [ntuples] = x ;

ntuples++ ;

}

}

GrB_Matrix_build (A, I, J, X, ntuples, GrB_SECOND_FP64) ;

The equivalent sprandsym function in MATLAB takes 150 seconds, but
sprandsym uses a much higher-quality random number generator to cre-
ate the tuples [I,J,X]. Considering just the time for sparse(I,J,X,n,n)

in sprandsym (equivalent to GrB_Matrix_build), the time is 70 seconds.
That is, each of these three methods, setElement and build in Suite-
Sparse:GraphBLAS, and sparse in MATLAB, are equally fast.

17.3 Creating a finite-element matrix

Suppose a finite-element matrix is being constructed, with k=40,000 finite-
element matrices, each of size 8-by-8. The following operations (in pseudo-

326

MATLAB notation) are very efficient in SuiteSparse:GraphBLAS.

A = sparse (m,n) ; % create an empty n-by-n sparse GraphBLAS matrix

for i = 1:k

construct a 8-by-8 sparse or dense finite-element F

I and J define where the matrix F is to be added:

I = a list of 8 row indices

J = a list of 8 column indices

% using GrB_assign, with the ’plus’ accum operator:

A (I,J) = A (I,J) + F

end

If this were done in MATLAB or in GraphBLAS with blocking mode
enabled, the computations would be extremely slow. A far better approach
is to construct a list of tuples [I,J,X] and to use sparse(I,J,X,n,n). This
is identical to creating the same list of tuples in GraphBLAS and using the
GrB_Matrix_build, which is equally fast.

In SuiteSparse:GraphBLAS, the performance of both methods is essen-
tially identical, and roughly as fast as sparse in MATLAB. Inside Suite-
Sparse:GraphBLAS, GrB_assign is doing the same thing. When performing
A(I,J)=A(I,J)+F, if it finds that it cannot quickly insert an update into the
A matrix, it creates a list of pending tuples to be assembled later on. When
the matrix is ready for use in a subsequent GraphBLAS operation (one that
normally cannot use a matrix with pending computations), the tuples are
assembled all at once via GrB_Matrix_build.

GraphBLAS operations on other matrices have no effect on when the
pending updates of a matrix are completed. Thus, any GraphBLAS method
or operation can be used to construct the F matrix in the example above,
without affecting when the pending updates to A are completed.

The MATLAB wathen.m script is part of Higham’s gallery of matrices
[Hig02]. It creates a finite-element matrix with random coefficients for a 2D
mesh of size nx-by-ny, a matrix formulation by Wathen [Wat87]. The pat-
tern of the matrix is fixed; just the values are randomized. The GraphBLAS
equivalent can use either GrB_Matrix_build, or GrB_assign. Both meth-
ods have good performance. The GrB_Matrix_build version below is about
15% to 20% faster than the MATLAB wathen.m function, regardless of the
problem size. It uses the identical algorithm as wathen.m.

int64_t ntriplets = nx*ny*64 ;

I = malloc (ntriplets * sizeof (int64_t)) ;

327

J = malloc (ntriplets * sizeof (int64_t)) ;

X = malloc (ntriplets * sizeof (double)) ;

if (I == NULL || J == NULL || X == NULL)

{

FREE_ALL ;

return (GrB_OUT_OF_MEMORY) ;

}

ntriplets = 0 ;

for (int j = 1 ; j <= ny ; j++)

{

for (int i = 1 ; i <= nx ; i++)

{

nn [0] = 3*j*nx + 2*i + 2*j + 1 ;

nn [1] = nn [0] - 1 ;

nn [2] = nn [1] - 1 ;

nn [3] = (3*j-1)*nx + 2*j + i - 1 ;

nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;

nn [5] = nn [4] + 1 ;

nn [6] = nn [5] + 1 ;

nn [7] = nn [3] + 1 ;

for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

for (int krow = 0 ; krow < 8 ; krow++)

{

for (int kcol = 0 ; kcol < 8 ; kcol++)

{

I [ntriplets] = nn [krow] ;

J [ntriplets] = nn [kcol] ;

X [ntriplets] = em (krow,kcol) ;

ntriplets++ ;

}

}

}

}

// A = sparse (I,J,X,n,n) ;

GrB_Matrix_build (A, I, J, X, ntriplets, GrB_PLUS_FP64) ;

The GrB_assign version has the advantage of not requiring the user appli-
cation to construct the tuple list, and is almost as fast as using GrB_Matrix_build.
The code is more elegant than either the MATLAB wathen.m function or its
GraphBLAS equivalent above. Its performance is comparable with the other
two methods, but slightly slower, being about 5% slower than the MATLAB
wathen, and 20% slower than the GraphBLAS method above.

GrB_Matrix_new (&F, GrB_FP64, 8, 8) ;

328

for (int j = 1 ; j <= ny ; j++)

{

for (int i = 1 ; i <= nx ; i++)

{

nn [0] = 3*j*nx + 2*i + 2*j + 1 ;

nn [1] = nn [0] - 1 ;

nn [2] = nn [1] - 1 ;

nn [3] = (3*j-1)*nx + 2*j + i - 1 ;

nn [4] = 3*(j-1)*nx + 2*i + 2*j - 3 ;

nn [5] = nn [4] + 1 ;

nn [6] = nn [5] + 1 ;

nn [7] = nn [3] + 1 ;

for (int krow = 0 ; krow < 8 ; krow++) nn [krow]-- ;

for (int krow = 0 ; krow < 8 ; krow++)

{

for (int kcol = 0 ; kcol < 8 ; kcol++)

{

// F (krow,kcol) = em (krow, kcol)

GrB_Matrix_setElement (F, em (krow,kcol), krow, kcol) ;

}

}

// A (nn,nn) += F

GrB_assign (A, NULL, GrB_PLUS_FP64, F, nn, 8, nn, 8, NULL) ;

}

}

Since there is no Mask, and since GrB_REPLACE is not used, the call to
GrB_assign in the example above is identical to GxB_subassign. Either one
can be used, and their performance would be identical.

Refer to the wathen.c function in the Demo folder, which uses GraphBLAS
to implement the two methods above, and two additional ones.

17.4 Reading a matrix from a file

See also LAGraph_mmread and LAGraph_mmwrite, which can read and write
any matrix in Matrix Market format, and LAGraph_binread and LAGraph_binwrite,
which read/write a matrix from a binary file. The binary file I/O functions
are much faster than the read_matrix function described here, and also
much faster than LAGraph_mmread and LAGraph_mmwrite.

The read_matrix function in the Demo reads in a triplet matrix from
a file, one line per entry, and then uses GrB_Matrix_build to create the
matrix. It creates a second copy with GrB_Matrix_setElement, just to test

329

that method and compare the run times. Section 17.2 has already compared
build versus setElement.

The function can return the matrix as-is, which may be rectangular or
unsymmetric. If an input parameter is set to make the matrix symmetric,
read_matrix computes A=(A+A’)/2 if A is square (turning all directed edges
into undirected ones). If A is rectangular, it creates a bipartite graph, which
is the same as the augmented matrix, A = [0 A ; A’ 0]. If C is an n-by-n
matrix, then C=(C+C’)/2 can be computed as follows in GraphBLAS, (the
scale2 function divides an entry by 2):

GrB_Descriptor_new (&dt2) ;

GrB_set (dt2, GrB_TRAN, GrB_INP1) ;

GrB_Matrix_new (&A, GrB_FP64, n, n) ;

GrB_eWiseAdd (A, NULL, NULL, GrB_PLUS_FP64, C, C, dt2) ; // A=C+C’

GrB_free (&C) ;

GrB_Matrix_new (&C, GrB_FP64, n, n) ;

GrB_UnaryOp_new (&scale2_op, scale2, GrB_FP64, GrB_FP64) ;

GrB_apply (C, NULL, NULL, scale2_op, A, NULL) ; // C=A/2

GrB_free (&A) ;

GrB_free (&scale2_op) ;

This is of course not nearly as elegant as A=(A+A’)/2 in MATLAB, but
with minor changes it can work on any type and use any built-in operators in-
stead of PLUS, or it can use any user-defined operators and types. The above
code in SuiteSparse:GraphBLAS takes 0.60 seconds for the Freescale2 ma-
trix, slightly slower than MATLAB (0.55 seconds).

Constructing the augmented system is more complicated using the Graph-
BLAS C API Specification since it does not yet have a simple way of speci-
fying a range of row and column indices, as in A(10:20,30:50) in MATLAB
(GxB_RANGE is a SuiteSparse:GraphBLAS extension that is not in the Speci-
fication). Using the C API in the Specification, the application must instead
build a list of indices first, I=[10, 11 ... 20].

Thus, to compute the MATLAB equivalent of A = [0 A ; A’ 0], index
lists I and J must first be constructed:

int64_t n = nrows + ncols ;

I = malloc (nrows * sizeof (int64_t)) ;

J = malloc (ncols * sizeof (int64_t)) ;

// I = 0:nrows-1

// J = nrows:n-1

if (I == NULL || J == NULL)

{

330

if (I != NULL) free (I) ;

if (J != NULL) free (J) ;

return (GrB_OUT_OF_MEMORY) ;

}

for (int64_t k = 0 ; k < nrows ; k++) I [k] = k ;

for (int64_t k = 0 ; k < ncols ; k++) J [k] = k + nrows ;

Once the index lists are generated, however, the resulting GraphBLAS
operations are fairly straightforward, computing A=[0 C ; C’ 0].

GrB_Descriptor_new (&dt1) ;

GrB_set (dt1, GrB_TRAN, GrB_INP0) ;

GrB_Matrix_new (&A, GrB_FP64, n, n) ;

// A (nrows:n-1, 0:nrows-1) = C’

GrB_assign (A, NULL, NULL, C, J, ncols, I, nrows, dt1) ;

// A (0:nrows-1, nrows:n-1) = C

GrB_assign (A, NULL, NULL, C, I, nrows, J, ncols, NULL) ;

This takes 1.38 seconds for the Freescale2 matrix, almost as fast as
A=[sparse(m,m) C ; C’ sparse(n,n)] in MATLAB (1.25 seconds). The
GxB_Matrix_concat function would be faster still (this example was written
prior to GxB_Matrix_concat was added to SuiteSparse:GraphBLAS).

Both calls to GrB_assign use no accumulator, so the second one causes
the partial matrix A=[0 0 ; C’ 0] to be built first, followed by the final
build of A=[0 C ; C’ 0]. A better method, but not an obvious one, is to
use the GrB_FIRST_FP64 accumulator for both assignments. An accumulator
enables SuiteSparse:GraphBLAS to determine that that entries created by
the first assignment cannot be deleted by the second, and thus it need not
force completion of the pending updates prior to the second assignment.

SuiteSparse:GraphBLAS also adds a GxB_RANGE mechanism that mimics
the MATLAB colon notation. This speeds up the method and simplifies the
code the user needs to write to compute A=[0 C ; C’ 0]:

int64_t n = nrows + ncols ;

GrB_Matrix_new (&A, xtype, n, n) ;

GrB_Index I_range [3], J_range [3] ;

I_range [GxB_BEGIN] = 0 ;

I_range [GxB_END] = nrows-1 ;

J_range [GxB_BEGIN] = nrows ;

J_range [GxB_END] = ncols+nrows-1 ;

// A (nrows:n-1, 0:nrows-1) += C’

GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,

C, J_range, GxB_RANGE, I_range, GxB_RANGE, dt1) ;

331

// A (0:nrows-1, nrows:n-1) += C

GrB_assign (A, NULL, GrB_FIRST_FP64, // or NULL,

C, I_range, GxB_RANGE, J_range, GxB_RANGE, NULL) ;

Any operator will suffice because it is not actually applied. An operator is
only applied to the set intersection, and the two assignments do not overlap.
If an accum operator is used, only the final matrix is built, and the time in
GraphBLAS drops slightly to 1.25 seconds. This is a very small improvement
because in this particular case, SuiteSparse:GraphBLAS is able to detect that
no sorting is required for the first build, and the second one is a simple con-
catenation. In general, however, allowing GraphBLAS to postpone pending
updates can lead to significant reductions in run time.

17.5 User-defined types and operators

The Demo folder contains two working examples of user-defined types, first
discussed in Section 6.1.1: double complex, and a user-defined typedef

called wildtype with a struct containing a string and a 4-by-4 floatmatrix.
Double Complex: Prior to v3.3, GraphBLAS did not have a native

complex type. It now appears as the GxB_FC64 predefined type, but a com-
plex type can also easily added as a user-defined type. The Complex_init

function in the usercomplex.c file in the Demo folder creates the Complex

type based on the C11 double complex type. It creates a full suite of op-
erators that correspond to every built-in GraphBLAS operator, both binary
and unary. In addition, it creates the operators listed in the following table,
where D is double and C is Complex.

name types MATLAB/Octave description
equivalent

Complex_complex D ×D → C z=complex(x,y) complex from real and imag.
Complex_conj C → C z=conj(x) complex conjugate
Complex_real C → D z=real(x) real part
Complex_imag C → D z=imag(x) imaginary part
Complex_angle C → D z=angle(x) phase angle
Complex_complex_real D → C z=complex(x,0) real to complex real
Complex_complex_imag D → C z=complex(0,x) real to complex imag.

The Complex_init function creates two monoids (Complex_add_monoid
and Complex_times_monoid) and a semiring Complex_plus_times that cor-
responds to the conventional linear algebra for complex matrices. The in-
clude file usercomplex.h in the Demo folder is available so that this user-

332

defined Complex type can easily be imported into any other user application.
When the user application is done, the Complex_finalize function frees the
Complex type and its operators, monoids, and semiring. NOTE: the Complex
type is not supported in this Demo in Microsoft Visual Studio.

Struct-based: In addition, the wildtype.c program creates a user-
defined typedef of a struct containing a dense 4-by-4 float matrix, and a
64-character string. It constructs an additive monoid that adds two 4-by-4
dense matrices, and a multiplier operator that multiplies two 4-by-4 matrices.
Each of these 4-by-4 matrices is treated by GraphBLAS as a “scalar” value,
and they can be manipulated in the same way any other GraphBLAS type can
be manipulated. The purpose of this type is illustrate the endless possibilities
of user-defined types and their use in GraphBLAS.

17.6 User applications using OpenMP or other thread-
ing models

An example demo program (context_demo) is included that illustrates how a
multi-threaded user application can use GraphBLAS, where each user thread
calls GraphBLAS simultaneously, with nested parallelism.

GraphBLAS can also be combined with user applications that rely on
MPI, the Intel TBB threading library, POSIX pthreads, Microsoft Windows
threads, or any other threading library. If GraphBLAS itself is compiled
with OpenMP, it will be thread safe when combined with other libraries.
See Section 10.2.2 for thread-safety issues that can occur if GraphBLAS is
compiled without OpenMP.

333

18 Compiling and Installing SuiteSparse:GraphBLAS

18.1 Quick Start

GraphBLAS requires cmake version 3.20 or later. It optionally can use
OpenMP for best performance. For OpenMP on the Mac, see Section 18.4.5.
Without OpenMP, GraphBLAS will be significantly slower since it is a highly
parallel package.

A cmake build system is available for Linux, Mac, and Windows. For
Linux or Mac, a simple Makefile wrapper is available that accesses this cmake
build system. Simply do:

make

sudo make install

For Windows, open CMake and use the provided CMakeLists.txt file to
build GraphBLAS in the GraphBLAS/build folder.

Next, try the demos with make demos. The output of the demos will be
compared with expected output files in Demo/Output.

18.2 Requirements

GraphBLAS requires cmake version 3.20 or later. It uses OpenMP for best
performance (this is STRONGLY recommended, but GraphBLAS can be
compiled without it). It requires the lz4 and zstd compression packages,
and optionally uses the cpu_features package by Google; all of these are
bundled with the GraphBLAS source.

Using the GraphBLAS JIT has many requirements, but it greatly in-
creases performance, particularly with user-defined types and operators, and
when typecasting is done with built-in types and operators.

The cmake build script sets up the JIT to use the compiler and compiler
flags used to build GraphBLAS itself. If the target environment does not
have a compiler (the Apple iPad for example), then the JIT will not work.

The JIT requires access to a cache folder, which should be preserved even
after a program that uses GraphBLAS finishes, so that JIT kernels do not
have to continually be recompiled. By default the folder is ~/.SuiteSparse/GrBX.Y.Z
on Linux/Mac, where X.Y.Z is the version of GraphBLAS you have. On
Windows, the location is determined by your LOCALAPPDATA environment
variable, where the folder is SuiteSparse/GrBX.Y.Z inside that location.

334

In SuiteSparse:GraphBLAS v10.1.1 and later, the file system that holds
the cache no longer needs to suppose file locking. See Section 9.1.11 for more
details.

18.3 Installing GraphBLAS for MATLAB/Octave

See the GraphBLAS/GraphBLAS/README.md file for instructions on how to
compiler the MATLAB/Octave interface on Linux/Mac/Windows.

18.4 More details

18.4.1 On Linux and Mac

GraphBLAS makes extensive use of features in the C11 standard, and thus
a C compiler supporting this version of the C standard is required to use all
features of GraphBLAS.

Any version of the Intel icx compiler is highly recommended.
In most cases, the Intel icx and the Intel OpenMP library (libiomp) result
in the best performance. The gcc and the GNU OpenMP library (libgomp)
generally gives good performance: typically on par with icx but in a few
special cases significantly slower. The Intel icc compiler is not recommended;
it results in poor performance for #pragma omp atomic.

If you are using a C compiler that does not support the C11 standard,
such as cl in Microsoft Visual Studio, then the _Generic keyword is not
available. SuiteSparse:GraphBLAS will still compile, but you will not have
access to polymorphic functions such as GrB_assign. You will need to use
the non-polymorphic functions instead.

To compile SuiteSparse:GraphBLAS, simply type make in the main Graph-
BLAS folder, which compiles the library with your default system compiler.
This compile GraphBLAS using 8 threads, which will take a long time. To
compile with more threads (40, for this example), use:

make JOBS=40

To use a non-default compiler with 4 threads:

make CC=icx CXX=icpx JOBS=4

335

GraphBLAS v6.1.3 and later use the cpu_features package by Google
to determine if the target architecture supports AVX2 and/or AVX512F
(on Intel x86 64 architectures only). In case you have build issues with
this package, you can compile without it (and then AVX2 and AVX512F
acceleration will not be used):

make CMAKE_OPTIONS=’-DGBNCPUFEAT=1’

Without cpu_features, it is still possible to enable AVX2 and AVX512F.
Rather than relying on run-time tests, you can use these flags to enable both
AVX2 and AVX512F, without relying on cpu_features:

make CMAKE_OPTIONS=’-DGBNCPUFEAT=1 -DGBAVX2=1 -DGBAVX512F=1’

To use multiple options, separate them by a space. For example, to
build just the library but not cpu_features, and to enable AVX2 but not
AVX512F, and use 40 threads to compile:

make CMAKE_OPTIONS=’-DGBNCPUFEAT=1 -DGBAVX2=1’ JOBS=40

After compiling the library, you can compile the demos with make all

and then make demos while in the top-level GraphBLAS folder.
If cmake or make fail, it might be that your default compiler does not

support C11. Try another compiler. For example, try one of these options.
Go into the build directory and type one of these:

CC=gcc cmake ..

CC=gcc-11 cmake ..

CC=xlc cmake ..

CC=icx cmake ..

You can also do the following in the top-level GraphBLAS folder instead:

CC=gcc make

CC=gcc-11 make

CC=xlc make

CC=icx make

For faster compilation, you can specify a parallel make. For example, to
use 32 parallel jobs and the gcc compiler, do the following:

JOBS=32 CC=gcc make

336

18.4.2 On the Mac (Intel or ARM)

GraphBLAS requires cmake v3.20 or later, and it optionally uses make to sim-
plify the use of the cmake build system. It also needs other Apple Command
Line Tools from Xcode. First install Xcode (see https://developer.apple.com/
xcode), and then install the command line tools for Xcode:

xcode-select --install

Next, install brew, at https://brew.sh, or spack. Use brew or spack to
install cmake version 3.20 or later.

18.4.3 On the Intel-based Mac

If you have the Intel compiler and its OpenMP library, then use the following
in the top-level GraphBLAS folder. The Intel OpenMP library will be found
automatically:

make CC=icc CXX=icpc

18.4.4 On Microsoft Windows

SuiteSparse:GraphBLAS can be compiled by the Microsoft C compiler (cl)
using Microsoft Visual Studio. However, that compiler is not C11 compliant.
As a result, GraphBLAS on Windows will have a few minor limitations.

� The MS Visual Studio compiler does not support the _Generic key-
word, required for the polymorphic GraphBLAS functions. So for ex-
ample, you will need to use GrB_Matrix_free instead of just GrB_free.

� Variable-length arrays are not supported, so user-defined types are lim-
ited to 1024 bytes in size. This can be changed by editing GB_VLA_MAXSIZE
in Source/GB_compiler.h, and recompiling SuiteSparse:GraphBLAS.

� AVX acceleration is not enabled.

� You must compile with 64-bit computing enabled (x64). Otherwise, a
compiler error will occur (InterlockedExchange64, InterlockdOr64
and other methods will not be found).

337

https://developer.apple.com/xcode
https://developer.apple.com/xcode
https://brew.sh

If you use a recent gcc or icx compiler on Windows other than the
Microsoft Compiler (cl), these limitations can be avoided.

The following instructions apply to Windows 10, CMake 3.16, and Visual
Studio 2019, but may work for earlier versions.

1. Install CMake 3.16 or later, if not already installed. See https://cmake.
org/ for details.

2. Install Microsoft Visual Studio, if not already installed. See https:
//visualstudio.microsoft.com/ for details. Version 2019 is preferred, but
earlier versions may also work.

3. Open a terminal window and type this in the GraphBLAS/build folder:

cmake ..

Alternatively, use the cmake gui program to configure the cmake build
system for GraphBLAS.

4. The cmake command generates many files in GraphBLAS/build, and
the file graphblas.sln in particular. Open the generated graphblas.sln
file in Visual Studio.

5. Optionally: right-click graphblas in the left panel (Solution Explorer)
and select properties; then navigate to Configuration Properties,
C/C++, General and change the parameter Multiprocessor Compilation

to Yes (/MP). Click OK. This will significantly speed up the compilation
of GraphBLAS.

6. Select the Buildmenu item at the top of the window and select Build Solution.
This should create a folder called Release and place the compiled
graphblas.dll, graphblas.lib, and graphblas.exp files there. Please
be patient; some files may take a while to compile and sometimes may
appear to be stalled. Just wait.

7. Alternatively, instead of opening Visual Studio, type this command in
the terminal window while in the build folder:

cmake --build . --config Release

338

https://cmake.org/
https://cmake.org/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

8. Add the GraphBLAS/build/Release folder to the Windows System
path:

� Open the Start Menu and type Control Panel.

� Select the Control Panel app.

� When the app opens, select System and Security.

� Under System and Security, select System.

� From the top left side of the System window, select Advanced System Settings.
You may have to authenticate at this step. If you cannot authen-
ticate, try setting the User Environment Variables instead.

� The Systems Properties window should appear with the Advanced
tab selected; select Environment Variables.

� The Environment Variables window displays 2 sections, one for
User variables and the other for System variables. Under the
Systems variable section, scroll to and select Path, then select
Edit. A editor window appears allowing to add, modify, delete or
re-order the parts of the Path.

� Add the full path of the GraphBLAS\build\Release folder (typi-
cally starting with C:\Users\you\..., where you is your Windows
username) to the Path. To use the MATLAB interface, add the
full path of the GraphBLAS\GraphBLAS\build\Release folder as
well.

� If the above steps do not work, you can instead copy the graphblas.*
files from GraphBLAS\build\Release into any existing folder listed
in your Path.

9. The GraphBLAS/Include/GraphBLAS.h file must be included in user
applications via #include "GraphBLAS.h". This is already done for
you in the MATLAB/Octave interface discussed in the next section.

18.4.5 Mac using clang

To use OpenMP with clang on the Mac, you can use one of two options:

� Using brew: this is recommended, since Octave on the Mac requires it.
Install brew (see https://brew.sh), then do

339

https://brew.sh

brew install libomp

Add the following to your ~/.zshrc file:

export OpenMP_ROOT=$(brew --prefix)/opt/libomp

Next, restart your terminal shell before using cmake or Octave to com-
pile GraphBLAS.

� Using the R-project via https://mac.r-project.org/openmp/. Be sure to
check that page for the OpenMP version that matches your version of
Apple Xcode. For example, if using Xcode 13.3 to 13.4.1, use:

curl -O https://mac.r-project.org/openmp/openmp-13.0.0-darwin21-Release.tar.gz

sudo tar fvxz openmp-13.0.0-darwin21-Release.tar.gz -C /

These commands will install universal binaries (ARM and x86) for
libomp.dylib, and the following files:

/usr/local/lib/libomp.dylib

/usr/local/include/ompt.h

/usr/local/include/omp.h

/usr/local/include/omp-tools.h

Once you do this, the GraphBLAS cmake build system should find this
copy of OpenMP for clang. However, if you use this version of the
OpenMP library, GraphBLAS will fail when used in Octave.

18.4.6 Linking issues after installation

My previous Linux distro (Ubuntu 18.04) included a copy of libgraphblas.so.1,
which is SuiteSparse:GraphBLAS v1.1.2. After installing SuiteSparse:GraphBLAS
in /usr/local/lib (with sudo make install), compiling a simple stand-
alone program links against libgraphblas.so.1 instead of the latest ver-
sion, while at the same time accessing the latest version of the include file as
/usr/local/include/GraphBLAS.h. This command fails:

340

https://mac.r-project.org/openmp/

gcc prog.c -lgraphblas

Revising my LD_LIBRARY_PATH to put /usr/local/lib first in the library
directory order didn’t help. If you encounter this problem, try one of the
following options (all four work for me, and link against the proper version,
/usr/local/lib/libgraphblas.so.10.0.3 for example):

gcc prog.c -l:libgraphblas.so.10

gcc prog.c -l:libgraphblas.so.10.0.3

gcc prog.c /usr/local/lib/libgraphblas.so

gcc prog.c -Wl,-v -L/usr/local/lib -lgraphblas

This prog.c test program is a trivial one, which works in v1.0 and later:

#include <GraphBLAS.h>

int main (void)

{

GrB_init (GrB_NONBLOCKING) ;

GrB_finalize () ;

}

Compile the program above, then use this command to ensure libgraphblas.so.10
appears:

ldd a.out

18.4.7 Running the tests

To run a short test, type make demo at the top-level GraphBLAS folder. This
will run all the demos in GraphBLAS/Demos. MATLAB is not required.

To perform the extensive tests in the Test folder, and the statement cover-
age tests in Tcov, MATLAB R2018a or later is required. See the README.txt
files in those two folders for instructions on how to run the tests. The tests
in the Test folder have been ported to MATLAB on Linux, MacOS, and
Windows. The Tcov tests do not work on Windows. The MATLAB/Octave
interface test (gbtest) works on all platforms; see the GraphBLAS/GraphBLAS
folder for more details.

18.4.8 Cleaning up

To remove all compiled files, type make distclean in the top-level Graph-
BLAS folder.

341

19 Release Notes

� July 25, 2025: version 10.1.1

– gcc can now be used the Power or s390: workaround added; see
Source/mxm/factory/GB_AxB_saxpy3_symbolic_fine_template.c.

This resolves the issue found in v10.1.0.

– OpenMP usage: replace omp critical with lock/unlock.

– MATLAB: added method for getting/setting the JIT cache path.

– JIT file lock/unlock: removed; if multiple user processes use Graph-
BLAS at the same time, each must set their own unique JIT cache.

– (65) bug fix: theta type definitions for user-defined index binary
ops were incorrectly typedef’d in the JIT kernels.

� June 1, 2025: version 10.1.0

– add support for RISC-V vectorization: contributed by Rodion
Suvorov

– added GRAPHBLAS_VANILLA: compile-time flag that disables all
GxB methods.

– gcc and the Power or s390 processors: using gcc on the Power or
s390 processors leads to a failure in the OpenMP atomic capture
intrinsic. See Source/mxm/factory/GB_AxB_saxpy3_symbolic_template.c.
The cmake build system has been revised so that it refuses to use
gcc on these systems system. Use clang or the IBM xlc compiler
instead, which do not trigger this error.

– GxB_STDC_VERSION: this is normally equal to __STDC_VERSION__

and is determined automatically in GraphBLAS.h. If it is ≥
201112L, then C11 is being used and the polymorphic functions
(based on _Generic) are available. It can now be #defined by
the user application prior to its #include "GraphBLAS.h" state-
ment. If a C++ compiler is used to compile the user application
then GxB_STDC_VERSION is set to 199001L to denote C90 (and no
_Generic keyword is used).

See GraphBLAS/Demo/Include/graphblas_demo.h for an exam-
ple usage.

342

– minor updates to build system

– iterator methods: revised so they do not conflict with the copy of
GraphBLAS v7.4.4 used inside MATLAB R2024b. No effect on
normal C API, so no change in major SO number for this release.

� May 5, 2025: version 10.0.5

– revised cmake build system

– (64) bug fix: GrB_assign, C<M>+=A, method 08n, when A is full.
Caught by Gabe Gomez.

– (63) bug fix: GrB_mxm when using the masked dot-product and
the output matrix is iso-valued.

� Apr 7, 2025: version 10.0.3

– upgrade xxHash to 0.8.3: contributed by Christoph Grüninger.

– upgrade cpu_features to 0.9.0: contributed by Christoph Grüninger.

– Octave interface: revised for the recent MacOS (15.3.2), assuming
that both Octave and OpenMP are installed via homebrew.

� Mar 20, 2025: version 10.0.2

– performance: improved the performance of GrB_setElement when
many entries are inserted into a matrix that is initially empty.

– (61) bug fix: GxB_Serialized_get_Scalar declared twice in GraphBLAS.h;
caught by Erik Welch.

� Mar 6, 2025: version 10.0.1

– (60) bug fix: one of the GrB_mxm kernels (saxpy4) can hit a segfault
for user-defined types, in the JIT kernels. Caught by Gabe Gomez.

� Mar 1, 2025: version 10.0.0

343

– 32/64 bit matrices and vectors: the GrB_Matrix and GrB_Vector

now exploit 32-bit integers when possible. New methods added to
pass 32-bit integer arrays to/from GrB_build, extract, assign,
subassign, and extractTuples. New object, the GxB_Container
added for fast import/export of matrices/vectors with arbitrary
integer content.

– GrB_Field: this enum is strongly deprecated, and replaced with
typedef int GrB_Field. This is an upward-compatible change
to the API, and will allow the creation of a future mathematical
field object in GraphBLAS. This type should not be used; use an
int instead. It will be replaced in a future version of GraphBLAS.

– enum parameters: replaced all enum parameters with int, to sim-
plify future updates to enum parameters, including the GrB_Field.

– GxB_JIT_ERROR: added in 9.4.x, changed value to avoid conflict
with LAGraph error codes.

– pack/unpack: these are declared historical; they still work but
use 64-bit integers only. Use the new GxB_Container methods
instead.

– GxB_Matrix_iso and GxB_Vector_iso: declared historical; use
GrB_get with the new GxB_ISO enum.

– GxB_Matrix_type, GxB_Vector_type, GxB_Scalar_type: no longer
historical; added back to the user guide.

– Summary: the API is upward-compatible with 9.4.x, but only
after the user application is recompiled with GraphBLAS v10.0.0.
As a result, the SO version must increase from 9 to 10.

� Feb 20, 2025: version 9.4.5

– (59) bug fix: the GxB_NO_INT32 and GxB_NOT_INT64 flags in GB_control.h
did not completely remove some of the INT32 and INT64 factory
kernels. Caught by Erik Welch, NVIDIA.

– workaround for an AppleClang compiler bug: On the Mac, the
Source/mask/GB_masker.c file triggers a bug in AppleClang 16.0.0
with -O3 in (MacOS 14.6.1 (23G93), Xcode 16.2, Apple clang ver-
sion 16.0.0, clang-1600.0.26.6). It also fails in MacOS 15.2 (Target:

344

arm64-apple-darwin23.6.0). The bug is triggered by these tests in
LAGraph (v1.2 branch, unreleased, Jan 4, 2025):

39 - LAGraphX_BF (SIGTRAP)

40 - LAGraphX_Coarsen_Matching (Failed)

41 - LAGraphX_FastGraphletTransform (SIGTRAP)

49 - LAGraphX_PageRankGX (SIGTRAP)

54 - LAGraphX_SquareClustering (SIGTRAP)

61 - LAGraphX_msf (Failed)

When using clang, optimization is turned off for this file. This
has no impact on performance since GB_masker.c is very simple,
consisting of a single sequence of calls to other methods.

� Feb 17, 2024: version 9.4.4

– (58) bug fix: semirings with user-defined monoids and the GrB_ONEB
or GxB_PAIR operators caused a JIT compiler error. Caught by
Gabe Gomez.

– (57) bug fix: GraphBLAS.h header: remove duplicate definitions
of GxB_MAX_FIRST_* semirings (incompletely moved to ’historical’
section in 9.4.2).

� Nov 20, 2024: version 9.4.2

– clarified User Guide: regarding when the hyper-hash is built

– JIT: reduced JIT kernel encodings

– (also includes the updates from 9.4.0.beta and 9.4.1.beta listed
below).

� Nov 15, 2024: version 9.4.1 (only released as BETA)

– More JIT kernels: all JIT kernels for GrB_assign, GxB_subassign,
GrB_extract, GxB_sort GrB_kronecker, the stand-alone mask
phase (an internal method that computes C⟨M⟩ = Z), and utili-
ties have been created. All kernels formerly tagged in the code as
JIT: needed are now finished.

345

– removed Factory kernels for: types int8 and uint8, and semirings:
max min, max plus, max times, min max, min times, plus min,
plus max, non-Boolean land/lor/lxor/lxnor, and integer times first/second,
to reduce size of compiled library. JIT kernels will be used instead
for these types and semirings.

– GxB_IndexBinaryOp: finalized and named as GxB_*.

� Oct 15, 2024: version 9.4.0 (only released as BETA)

– new operator and associated methods: added the draft G*B_IndexBinaryOp.

– JIT error-handling behavior changed: if a compiler error occurs in
the JIT, GxB_JIT_ERROR is now returned. Previously, GraphBLAS
would fall back to a generic method if such an error occurred.

� Aug 12, 2024: version 9.3.1

– (56) bug fix: wrong type for fgetc return value in JITpackage;
leads to infinite loop on some systems when building GraphBLAS.

� Aug 2, 2024: version 9.3.0

– code restructuring: Source folder split into many subfolders, and
some files and internal functions renamed. No visible external
change.

– (55) bug fix: GrB_apply with user-defined index-unary op and
generic kernel.

– (54) bug fix: reducing a huge iso full matrix to a scalar resulted
in integer overflow if nrows*ncols was larger than about 260.

– reduced size of compiled library: int16 and uint16 types and
operators for FactoryKernels are disabled in GB_control.h. The
JIT will always be used instead.

� May 22, 2024: version 9.2.0

– Added graphblas_install.m for a simpler method of compiling
the MATLAB/Octave interface for GraphBLAS.

346

– JIT: sanitizing the JIT cache path, better burble for compiler
errors.

– GrB_get/GrB_set: better handling of concurrent get/set between
different user threads.

� Mar 22, 2024: version 9.1.0

– minor updates to build system

– C11 complex type detection: this is now detected and configured
by cmake, instead of using an #if ... in the GraphBLAS.h header.
This change was required to port GraphBLAS to the clang-cl com-
piler on Windows when it simulates the MSVC compiler. Also
added a new feature (thus the minor version update to 9.1.0):
GxB_HAVE_COMPLEX* to GraphBLAS.h to indicate which kind of
complex data types are available in C11 or MSVC. Contributed
by Markus Mützel.

– (53) bug fix: eWiseAdd C<M>=A+B when M, A, and B are all hy-
persparse; access to M was incorrect (also affects C<M>+=T for any
operation, if M and T are both hypersparse).

� Mar 1, 2024: version 9.0.3

– (52) performance bug fix: JIT kernels since v8.3.1 were not com-
piled with OpenMP.

� Feb 26, 2024: version 9.0.2

– GraphBLAS/Makefile make static was incorrect.

� Jan 20, 2024: version 9.0.1

– minor updates to build system

� Version 9.0.0, Jan 10, 2024

– GrB_get/GrB_set: new functions from the v2.1 C API.

347

– GrB_Type_new, GrB_UnaryOp_new, GrB_IndexUnaryOp_new: no
longer macros, since GrB_set can be used to set the names of the
operators. These methods no longer extract the name, so the de-
fault name is now the empty string. This is because GrB_get/set
can only set these names once. This is a non-compatible change
of behavior for these 3 methods, so SuiteSparse:GraphBLAS must
become v9.0.0.

– historical methods: many methods are replaced by GrB_get and
GrB_set. They remain in SuiteSparse:GraphBLAS but have been
declared historical. Terse prototypes exist in GraphBLAS.h, and
any discussion is removed from the User Guide: GxB_get, GxB_set,
and the methods they call, and many more. Use GrB_get/set

in place those methods, and for: GxB_*type_name, GxB_*type,
GxB_Monoid_operator, GxB_Monoid_identity, GxB_Monoid_terminal,
GxB_Semiring_add, GxB_Semiring_multiply. Use
GrB_STORAGE_ORIENTATION_HINT in place of GxB_FORMAT.

– hyper_hash: constructed only if the number of non-empty vectors
in a hypersparse matrix is large (> 1024, by default).

– minor updates to build system: *.pc files for pkgconfig

� Dec 30, 2023: version 8.3.1

– remove #undef I from GraphBLAS.h, so as not to conflict with
the definition of I from complex.h.

– major change to build system: by Markus Mützel

� Oct 7, 2023: version 8.2.1

– (49) bug fix: GrB_mxm saxpy4 and saxpy5 had incorrectly handling
of typecasting in v8.0.0 to v8.2.0 (caught by Erik Welch)

– cross-compiler support: replace check_c_source_runs with _compiles
for GraphBLAS and SuiteSparse config, and remove check for
getenv("HOME").

– cmake update: add ”None” build type, from Antonio Rojas, for
Arch Linux

� Version 8.2.0, Sept 8, 2023

348

– cmake updates: SuiteSparse:: namespace by Markus Mützel.

� Version 8.0.2, June 16, 2023

– added -DJITINIT=option: use -DJITINIT to set the initial state
of the GxB_JIT_C_CONTROL (4:on, 3:load, 2:run, 1:pause, 0:off).
The default is 4 (on) if the JIT is enabled, or 2 (run) if -DNJIT=1
is set.

– xxHash: upgraded to latest version as of June 16, 2023

� Version 8.0.1, May 27, 2023

– (48) bug fix: GrB_*_nvals returned UINT64_MAX (’infinity’) for a
GrB_Vector of size n-by-260; it should return 260. Caught by Erik
Welch, NVIDIA.

– added GxB_Context_error and GxB_Context_wait

– C++: changed complex typedefs for C++ that include GraphBLAS.h.
Update from Markus Mützel.

� Version 8.0.0 (May 18, 2023)

– version 8: This version is a major SO version increase, since it re-
moves a few minor user-visible features from SuiteSparse:GraphBLAS:
the GrB_Descriptor no longer supports threading control, and
some features of the GxB_SelectOp are removed (see below). Enum
values have been changed for compatibility with the upcoming
GrB_set/get features in the V2.1 C API.

– The JIT: GraphBLAS v8.0.0 includes a JIT for the CPU kernels,
which can compile kernels at run-time. Added GxB_set/get op-
tions and environment variables to control the JIT. The GxB_*Op_new
methods can accept NULL function pointers, if the strings are pro-
vided, valid, and the JIT is enabled.

– GxB_Type_new: the size of the type can be given as zero, in which
case the size is determined via a JIT kernel.

– GxB_UnaryOp_new, GxB_BinaryOp_new, and GxB_IndexUnaryOp_new:
the function pointer can be given as NULL, in which case the func-
tion is created by the JIT.

349

– math kernels: revised for CUDA JIT. More accurate complex
floating-point for Mac OS on Apple Silicon.

– Demo/wildtype_demo: change to double so that CPU and GPU
versions compute the same result.

– GxB_get: can return malloc/calloc/realloc/free

– GxB_Context: an object for controlling computational resources:
number of OpenMP threads, the chunk factor, and (draft) GPU
id.

– GrB_Descriptor: removed ability to control the number of OpenMP
threads from the descriptor (a rarely used feature). Replaced with
the GxB_Context object.

– GxB_SelectOp: GraphBLAS no longer supports user-defined GxB_SelectOps.
Use a GrB_IndexUnaryOp instead. The GxB_SelectOp_new and
GxB_SelectOp_free functions are removed entirely. The built-in
GxB_SelectOps, GxB_Matrix_select, GxB_Vector_select, and
GxB_select still work. However, the GxB_EQ_THUNK, GxB_EQ_ZERO,
GxB_NE_THUNK, and GxB_NE_ZERO operators no longer work on
user-defined types, as they did in v7.4.4 and earlier. Create a
user-defined GrB_IndexUnaryOp to compute these operations in-
stead, and use GrB_select.

– alternative/Makefile: removed; not compatible with the JIT.

– zstd: upgraded to v1.5.5 (Apr 4, 2023)

� Version 7.4.4 (Mar 25, 2023)

– (47) bug fix: OpenMP atomics require seq_cst on the ARM.
Revised GB_atomics.h accordingly, and added them for all archi-
tectures (caught by Gábor Szárnyas).

� Version 7.4.3 (Jan 20, 2023)

– debug: turned on in GrB_Matrix_removeElement by mistake.

� Version 7.4.2 (Jan 17, 2023)

– minor change to build system: for SuiteSparse v7.0.0.

350

– deprecation notice: in GraphBLAS v8.0.0, the ability to set the
number of threads, and chunk size, in the descriptor will be re-
moved. It still appears in v7.x, but will be replaced by a Context
object in v8.0.0.

� Version 7.4.1 (Dec 29, 2022)

– global free pool: disabled. Benefit for single-thread user applica-
tions was modest, and it causes too much contention in a critical
section when the user application is multi-threaded.

– GrB_mxm: revised task creation heuristics for sparse-times-sparse
for better performance.

� Version 7.4.0 (Dec 23, 2022)

– add non-va_arg methods: va_arg-based GxB_get/set methods
are C11 but cause issues for cffi in Python. As a temporary
workaround, new methods have been added that do not use va_arg.
The existing GxB_get/set methods are not changed. The new
methods are not in the user guide, since all of the GxB_get/set

methods will be superceded with GrB_get/set in the v2.1 C API.
At that point, all GxB_get/set methods will become historical
(kept, not deprecated, but removed from the user guide).

� Version 7.3.3 (Dec 9, 2022)

– stdatomic.h: using #include <stdatomic.h> and
atomic_compare_exchange_weak instead of GCC/clang/icx __atomic_*
variants. Added -latomic if required.

– chunk factor for C=A*B (saxpy3 method): revised for non-builtin-
semirings

� Version 7.3.2 (Nov 12, 2022)

– cmake_modules: minor revision to build system, to sync with
SuiteSparse v6.0.0

– Added option -DNOPENMP=1 to disable OpenMP parallelism.

351

� Version 7.3.1 (Oct 21, 2022)

– workaround for a bug in the Microsoft Visual Studio Compiler,
MSC 19.2x (in vs2019).

� Version 7.3.0 (Oct 14, 2022)

– GrB_Matrix: changes to the internal data structure

– minor internal changes: A->nvals for sparse/hypersparse

– more significant changes: added hyper-hash for hypersparse case,
speeds up many operations on hypersparse matrices. Based on
[Gre21].

– GxB_unpack_HyperHash and GxB_pack_HyperHash: to pack/unpack
the hyper-hash

– @GrB MATLAB/Octave interface: changed license to Apache-2.0.

– MATLAB library: renamed to libgraphblas_matlab.so

– performance: faster C=A*B when using a single thread and B is a
sparse vector with many entries.

� Version 7.2.0 (Aug 8, 2022)

– added ZSTD as a compression option for serialize/deserialize: Ver-
sion 1.5.3 by Yann Collet, https://github.com/facebook/zstd.git.
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
Included in SuiteSparse:GraphBLAS via its BSD-3-clause license.
The default method is now ZSTD, level 1.

– GxB_Matrix_reshape* added.

– MATLAB interface: reshape, C(:)=A, C=A(:) are faster. Better
error messages.

� Version 7.1.2 (July 8, 2022)

– MATLAB interface: linear indexing added for C(:)=A, C=A(:),
and single-output I=find(C). Faster bandwidth, istriu, istril, is-
banded, isdiag. C(I,J)=A can now grow the size of A.

� Version 7.1.1 (June 3, 2022)

– minor updates to documentation and error messages

352

https://github.com/facebook/zstd.git

– MATLAB interface: minor revision of GrB.deserialize

� Version 7.1.0 (May 20, 2022)

– added cube root: GxB_CBRT_FP32 and GxB_CBRT_FP64 unary op-
erators

– added GxB_Matrix_isStoredElement and GxB_Vector_isStoredElement

� Version 7.0.4 (Apr 25, 2022)

– (46) bug fix: user-defined type size was incorrectly limited to 128
bytes. Caught by Erik Welch.

� Version 7.0.3 (Apr 8, 2022)

– faster transpose when using 2 threads

� Version 7.0.2 (Apr 5, 2022)

– (45) bug fix: vector iterator was broken for iterating across a
vector in bitmap format. Caught by Erik Welch.

� Version 7.0.1 (Apr 3, 2022)

– added revised ACM TOMS submission to the Doc folder

� Version 7.0.0 (Apr 2, 2022)

– (44) spec bug: GrB_Matrix_diag was implemented in v5.2.x and
v6.x with the wrong signature. This fix requires the major release
to change, from v6.x to v7.x.

– (43) performance bug fix for GrB_mxm: auto selection for saxpy
method (Hash vs Gustavson) revised.

– GrB_assign: better performance for C(i,j)=scalar and C(i,j)+=scalar
when i and j have length 1 (scalar assigment with no scalar ex-
pansion).

� Version 6.2.5 (Mar 14, 2022)

– For SuiteSparse v5.11.0.

353

� Version 6.2.4 (Mar 8, 2022)

– (42) bug fix: GrB_mxm with 0-by-0 iso full matrices. Caught by
Henry Amuasi in the Python grblas interface, then triaged and
isolated by Erik Welch.

� Version 6.2.3 (Mar 5, 2022)

– minor update to documentation in GrB.build: no change to any
code

� Version 6.2.2 (Feb 28, 2022)

– revised output of GxB_*_sort to return newly created matrices
C and P as full or bitmap matrices, as appropriate, instead of
sparse/hypersparse, following their sparsity control settings.

� Version 6.2.1 (Feb 14, 2022)

– (41) bug fix: GxB_Iterator_get used (void *) + size arith-
metic

� Version 6.2.0 (Feb 14, 2022)

– added the GxB_Iterator object and its methods. See Section 14.

– @GrB interface: revised sparse-times-full rule for the conventional
semiring (the syntax C=A*B), so that sparse-times-full results in C

as full, but hypersparse-times-sparse is not full (typically sparse
or hypersparse).

� Version 6.1.4 (Jan 12, 2022)

– added Section 16 to User Guide: how to get the best performance
out of algorithms based on GraphBLAS.

– cpu_features: no longer built as a separate library, but built di-
rectly into libgraphblas.so and libgraphblas.a. Added compile-
time flags to optionally disable the use of cpu_features com-
pletely.

– Octave 7: port to Apple Silicon (thanks to Gábor Szárnyas).

354

– min/max monoids: real case (FP32 and FP64) no longer terminal

– @GrB interface: overloaded C=A*B syntax where one matrix is full
always results in a full matrix C.

– Faster C=A*B for sparse-times-full and full-times-sparse for @GrB

interface.

� Version 6.1.3 (Jan 1, 2022)

– performance: task creation for GrB_mxm had a minor flaw (results
were correct but parallelism suffered). Performance improvement
of up to 10x when nnz(A)¡¡nnz(B).

� Version 6.1.2 (Dec 31, 2021)

– performance: revised swap_rule in GrB_mxm, which decides whether
to compute C=A*B or C=(B’*A’)’, and variants, resulting in up to
3x performance gain over v6.1.1 for GrB_mxm (observed; could be
higher in other cases).

� Version 6.1.1 (Dec 28, 2021)

– minor revision to AVX2 and AVX512f selection

– cpu_features/Makefile: remove test of list_cpu_features so
that the package can be built when cross-compiling

� Versions 6.1.0 (Dec 26, 2021)

– added GxB_get options: compiler name and version.

– added package: https://github.com/google/cpu features, Nov 30,
2021 version.

– performance: faster C+=A*B when C is full, A is bitmap/full, and
B is sparse/hyper. Faster C+=A’*B when A is sparse/hyper, and B

is bitmap/full.

– (40) bug fix: deserialization of iso and empty matrices/vectors was
incorrect

� Versions 6.0.2 and 5.2.2 (Nov 30, 2021)

355

https://github.com/google/cpu_features

– (39) bug fix: GrB_Matrix_export: numerical values not properly
exported

� Versions 6.0.1 and 5.2.1 (Nov 27, 2021)

– v6.0.x and v5.2.x (for the same x): differ only in GrB_wait, GrB_Info,
GrB_SCMP, and GxB_init.

– (38) bug fix: C+=A’*B when the accum operator is the same as
the monoid and C is iso-full, and A or B are hypersparse. (dot4
method).

– performance: GrB_select with user-defined GrB_IndexUnaryOp

about 2x faster.

– performance: faster (MIN,MAX)_(FIRSTJ,SECONDI) semirings

� Version 6.0.0 (Nov 15, 2021)

– this release contains only a few changes that cause a break with
backward compatibility. It is otherwise identical to v5.2.0.

– v6.0.0 is fully compliant with the v2.0 C API Specification. Three
changes from the v2.0 C API Spec are not backward compatible
(GrB_*wait, GrB_Info, GrB_SCMP). GxB_init has also changed.

* GrB_wait (object, mode): was GrB_wait (&object).

* GrB_Info: changed enum values

* GrB_SCMP: removed

* GxB_init (mode, malloc, calloc, realloc, free, is_thread_safe):
the last parameter, is_thread_safe, is deleted. The malloc,
calloc, realloc, and free functions must be thread-safe.

� Version 5.2.0 (Nov 15, 2021)

– Added for the v2.0 C API Specification: only features that are
backward compatible with SuiteSparse:GraphBLAS v5.x have been
added to v5.2.0:

* GrB_Scalar: replaces GxB_Scalar, GxB_Scalar_* functions
renamed GrB

* GrB_IndexUnaryOp: new, free, fprint, wait

* GrB_select: selection via GrB_IndexUnaryOp

* GrB_apply: with GrB_IndexUnaryOp

356

* GrB_reduce: reduce matrix or vector to GrB_Scalar

* GrB_assign, GrB_subassion: with GrB_Scalar input

* GrB_*_extractElement_Scalar: get GrB_Scalar from a ma-
trix or vector

* GrB*build: when dup is NULL, duplicates result in an error.

* GrB import/export: import/export from/to user-provided
arrays

* GrB_EMPTY_OBJECT, GrB_NOT_IMPLEMENTED: error codes added

* GrB_*_setElement_Scalar: set an entry in a matrix or vec-
tor, from a GrB_Scalar

* GrB_Matrix_diag: same as GxB_Matrix_diag (C,v,k,NULL)

* GrB_*_serialize/deserialize: with compression

* GrB_ONEB_T: binary operator, f(x, y) = 1, the same as GxB_PAIR_T.

– GxB*import* and GxB*export*: now historical.

– GxB_select: is now historical; use GrB_select instead.

– GxB_IGNORE_DUP: special operator for build methods only; if dup
is this operator, then duplicates are ignored (not an error)

– GxB_IndexUnaryOp_new: create a named index-unary operator

– GxB_BinaryOp_new: create a named binary operator

– GxB_UnaryOp_new: create a named unary operator

– GxB_Type_new: to create a named type

– GxB_Type_name: to query the name of a type

– added GxB_*type_name methods to query the name of a type as
a string.

– GxB_Matrix_serialize/deserialize: with compression; optional
descriptor.

– GxB_Matrix_sort, GxB_Vector_sort: sort a matrix or vector

– GxB_eWiseUnion: like GrB_eWiseAdd except for how entries in
A \B and B \A are computed.

– added LZ4/LZ4HC: compression library, http://www.lz4.org (BSD
2), v1.9.3, Copyright (c) 2011-2016, Yann Collet.

– MIS and pagerank demos: removed; MIS added to LAGraph/experimental

– disabled free memory pool if OpenMP not available

– (37) bug fix: ewise C=A+B when all matrices are full, GBCOMPACT
not used, but GB_control.h disabled the operator or type. Caught
by Roi Lipman, Redis.

357

http://www.lz4.org

– (36) bug fix: C<M>=Z not returning C as iso if Z iso and C initially
empty. Caught by Erik Welch, Anaconda.

– performance improvements: C=A*B: sparse/hyper times bitmap/full,
and visa versa, including C += A*B when C is full.

� Version 5.1.10 (Oct 27, 2021)

– (35) bug fix: GB_selector; A->plen and C->plen not updated
correctly. Caught by Jeffry Lovitz, Redis.

� Version 5.1.9 (Oct 26, 2021)

– (34) bug fix: in-place test incorrect for C+=A’*B using dot4

– (33) bug fix: disable free pool if OpenMP not available

� Version 5.1.8 (Oct 5, 2021)

– (32) bug fix: C=A*B when A is sparse and B is iso and bitmap.
Caught by Mark Blanco, CMU.

� Version 5.1.7 (Aug 23, 2021)

– (31) bug fix: GrB_apply, when done in-place and matrix starts
non-iso and becomes iso, gave the wrong iso result. Caught by
Fabian Murariu.

� Version 5.1.6 (Aug 16, 2021)

– one-line change to C=A*B: faster symbolic analysis when a vector
C(:,j) is dense (for CSC) or C(i,:) for CSR.

� Version 5.1.5 (July 15, 2021)

– submission to ACM Transactions on Mathematical Software as a
Collected Algorithm of the ACM.

� Version 5.1.4 (July 6, 2021)

– faster Octave interface. Octave v7 or later is required.

358

– (30) bug fix: 1-based printing not enabled for pending tuples.
Caught by Will Kimmerer, while working on the Julia interface.

� Version 5.1.3 (July 3, 2021)

– added GxB_Matrix_iso and GxB_Vector_iso: to query if a ma-
trix or vector is held as iso-valued

– (29) bug fix: Matrix_pack_*R into a matrix previously held by
column, or Matrix_pack*C into a matrix by row, would flip the
dimensions. Caught by Erik Welch, Anaconda.

– (28) bug fix: kron(A,B) with iso input matrices A and B fixed.
Caught by Michel Pelletier, Graphegon.

– (27) bug fix: v5.1.0 had a wrong version of a file; posted by mis-
take. Caught by Michel Pelletier, Graphegon.

� Version 5.1.2 (June 30, 2021)

– iso matrices added: these are matrices and vectors whose values
in the sparsity pattern are all the same. This is an internal change
to the opaque data structures of the GrB_Matrix and GrB_Vector

with very little change to the API.

– added GxB_Matrix_build_Scalar and GxB_Vector_build_Scalar,
which always build iso matrices and vectors.

– import/export methods can now import/export iso matrices and
vectors.

– added GrB.argmin/argmax to MATLAB/Octave interface

– added GxB_*_pack/unpack methods in place of import/export.

– added GxB_PRINT_1BASED to the global settings.

– added GxB_*_memoryUsage

– port to Octave: gbmake and gbtest work in Octave7 to build and
test the @GrB interface to GraphBLAS. Octave 7.0.0 is required.

� Version 5.0.6 (May 24, 2021)

– BFS and triangle counting demos removed from GraphBLAS/Demo:
see LAGraph for these algorithms. Eventually, all of Graph-
BLAS/Demo will be deleted, once LAGraph includes all the meth-
ods included there.

359

� Version 5.0.5 (May 17, 2021)

– (26) performance bug fix: reduce-to-vector where A is hypersparse
CSR with a transposed descriptor (or CSC with no transpose),
and some cases for GrB_mxm/mxv/vxm when computing C=A*B with
A hypersparse CSC and B bitmap/full (or A bitmap/full and B

hypersparse CSR), the wrong internal method was being selected
via the auto-selection strategy, resulting in a significant slowdown
in some cases.

� Version 5.0.4 (May 13, 2021)

– @GrB MATLAB/Octave interface: changed license to GNU Gen-
eral Public License v3.0 or later. It was licensed under Apache-2.0
in Version 5.0.3 and earlier. Changed back to Apache-2.0 for Ver-
sion 7.3.0; see above.

� Version 5.0.3 (May 12, 2021)

– (25) bug fix: disabling ANY_PAIR semirings by editing Source/GB_control.h
would cause a segfault if those disabled semirings were used.

– demos are no longer built by default

– (24) bug fix: new functions in v5.0.2 not declared as extern in
GraphBLAS.h.

– GrB_Matrix_reduce_BinaryOp reinstated from v4.0.3; same limit
on built-in ops that correspond to known monoids.

� Version 5.0.2 (May 5, 2021)

– (23) bug fix: GrB_Matrix_apply_BinaryOp1st and 2nd were us-
ing the wrong descriptors for GrB_INP0 and GrB_INP1. Caught by
Erik Welch, Anaconda.

– memory pool added for faster allocation/free of small blocks

– @GrB interface ported to MATLAB R2021a.

– GxB_PRINTF and GxB_FLUSH global options added.

– GxB_Matrix_diag: construct a diagonal matrix from a vector

– GxB_Vector_diag: extract a diagonal from a matrix

– concat/split: methods to concatenate and split matrices.

360

– import/export: size of arrays now in bytes, not entries. This
change is required for better internal memory management, and
it is not backward compatible with the GxB*import/export func-
tions in v4.0. A new parameter, is_uniform, has been added to
all import/export methods, which indicates that the matrix values
are all the same.

– (22) bug fix: SIMD vectorization was missing reduction(+,task_cnvals)
in GB_dense_subassign_06d_template.c. Caught by Jeff Huang,
Texas A&M, with his software package for race-condition detec-
tion.

– GrB_Matrix_reduce_BinaryOp: removed. Use a monoid instead,
with GrB_reduce or GrB_Matrix_reduce_Monoid.

� Version 4.0.3 (Jan 19, 2021)

– faster min/max monoids

– G=GrB(G) converts G from v3 object to v4

� Version 4.0.2 (Jan 13, 2021)

– ability to load *.mat files saved with the v3 GrB

� Version 4.0.1 (Jan 4, 2021)

– significant performance improvements: compared with v3.3.3, up
to 5x faster in breadth-first-search (using LAGraph_bfs_parent2),
and 2x faster in Betweenness-Centrality (using LAGraph_bc_batch5).

– GrB_wait(void), with no inputs: removed

– GrB_wait(&object): polymorphic function added

– GrB_*_nvals: no longer guarantees completion; use GrB_wait(&object)
or non-polymorphic GrB_*_wait (&object) instead

– GrB_error: now has two parameters: a string (char **) and an
object.

– GrB_Matrix_reduce_BinaryOp limited to built-in operators that
correspond to known monoids.

– GrB_*_extractTuples: may return indices out of order

– removed internal features: GBI iterator, slice and hyperslice ma-
trices

361

– bitmap/full matrices and vectors added

– index-based operators and semirings: GxB_FIRSTI_INT32 and re-
lated ops

– jumbled matrices: sort left pending, like zombies and pending
tuples

– GxB_get/set: added GxB_SPARSITY_* (hyper, sparse, bitmap, or
full) and GxB_BITMAP_SWITCH.

– GxB_HYPER: enum renamed to GxB_HYPER_SWITCH

– GxB*import/export: API modified

– GxB_SelectOp: nrows and ncols removed from function signa-
ture.

– OpenMP tasking removed from mergesort and replaced with par-
allel for loops. Just as fast on Linux/Mac; now the performance
ports to Windows.

– GxB_BURBLE added as a supported feature. This was an undocu-
mented feature of prior versions.

– bug fix: A({lo,hi})=scalar A(lo:hi)=scalar was OK

� Version 3.3.3 (July 14, 2020). Bug fix: w<m>=A*u with mask non-empty
and u empty.

� Version 3.3.2 (July 3, 2020). Minor changes to build system.

� Version 3.3.1 (June 30, 2020). Bug fix to GrB_assign and GxB_subassign
when the assignment is simple (C=A) but with typecasting.

� Version 3.3.0 (June 26, 2020). Compliant with V1.3 of the C API
(except that the polymorphic GrB_wait(&object) doesn’t appear yet;
it will appear in V4.0).

Added complex types (GxB_FC32 and GxB_FC64), many unary opera-
tors, binary operators, monoids, and semirings. Added bitwise opera-
tors, and their monoids and semirings. Added the predefined monoids
and semirings from the v1.3 specification. @GrB interface: added com-
plex matrices and operators, and changed behavior of integer operations
to more closely match the behavior on built-in integer matrices. The
rules for typecasting large floating point values to integers has changed.
The specific object-based GrB_Matrix_wait, GrB_Vector_wait, etc,

362

functions have been added. The no-argument GrB_wait() is depre-
cated. Added GrB_getVersion, GrB_Matrix_resize, GrB_Vector_resize,
GrB_kronecker, GrB_*_wait, scalar binding with binary operators for
GrB_apply,
GrB_Matrix_removeElement, and GrB_Vector_removeElement.

� Version 3.2.0 (Feb 20, 2020). Faster GrB_mxm, GrB_mxv, and GrB_vxm,
and faster operations on dense matrices/vectors. Removed compile-
time user objects (GxB_*_define), since these were not compatible
with the faster matrix operations. Added the ANY and PAIR operators.
Added the predefined descriptors, GrB_DESC_*. Added the structural
mask option. Changed default chunk size to 65,536. @GrB interface
modified: GrB.init is now optional.

� Version 3.1.2 (Dec, 2019). Changes to allow SuiteSparse:GraphBLAS
to be compiled with the Microsoft Visual Studio compiler. This com-
piler does not support the _Generic keyword, so the polymorphic func-
tions are not available. Use the equivalent non-polymorphic functions
instead, when compiling GraphBLAS with MS Visual Studio. In ad-
dition, variable-length arrays are not supported, so user-defined types
are limited to 128 bytes in size. These changes have no effect if you
have an C11 compliant compiler.

@GrB interface modified: GrB.init is now required.

� Version 3.1.0 (Oct 1, 2019). @GrB interface added. See the
GraphBLAS/GraphBLAS folder for details and documentation, and Sec-
tion 4.1.

� Version 3.0 (July 26, 2019), with OpenMP parallelism.

The version number is increased to 3.0, since this version is not back-
ward compatible with V2.x. The GxB_select operation changes; the
Thunk parameter was formerly a const void * pointer, and is now
a GxB_Scalar. A new parameter is added to GxB_SelectOp_new, to
define the expected type of Thunk. A new parameter is added to
GxB_init, to specify whether or not the user-provided memory man-
agement functions are thread safe.

The remaining changes add new features, and are upward compati-
ble with V2.x. The major change is the addition of OpenMP paral-

363

lelism. This addition has no effect on the API, except that round-off
errors can differ with the number of threads used, for floating-point
types. GxB_set can optionally define the number of threads to use
(the default is omp_get_max_threads). The number of threads can
also defined globally, and/or in the GrB_Descriptor. The RDIV and
RMINUS operators are added, which are defined as f(x, y) = y/x and
f(x, y) = y−x, respectively. Additional options are added to GxB_get.

� Version 2.3.3 (May 2019): Collected Algorithm of the ACM. No changes
from V2.3.2 other than the documentation.

� Version 2.3 (Feb 2019) improves the performance of many Graph-
BLAS operations, including an early-exit for monoids. These changes
have a significant impact on breadth-first-search (a performance bug
was also fixed in the two BFS Demo codes). The matrix and vec-
tor import/export functions were added, in support of the new LA-
Graph project (https://github.com/GraphBLAS/LAGraph, see also Sec-
tion 17.1). LAGraph includes a push-pull BFS in GraphBLAS that is
faster than two versions in the Demo folder. GxB_init was added to
allow the memory manager functions (malloc, etc) to be specified.

� Version 2.2 (Nov 2018) adds user-defined objects at compile-time, via
user *.m4 files placed in GraphBLAS/User, which use the GxB_*_define
macros (NOTE: feature removed in v3.2). The default matrix format is
now GxB_BY_ROW. Also added are the GxB_*print methods for printing
the contents of each GraphBLAS object (Section 13). PageRank demos
have been added to the Demos folder.

� Version 2.1 (Oct 2018) was a major update with support for new ma-
trix formats (by row or column, and hypersparse matrices), and colon
notation (I=begin:end or I=begin:inc:end). Some graph algorithms
are more naturally expressed with matrices stored by row, and this
version includes the new GxB_BY_ROW format. The default format in
Version 2.1 and prior versions is by column. New extensions to Graph-
BLAS in this version include GxB_get, GxB_set, and GxB_AxB_METHOD,
GxB_RANGE, GxB_STRIDE, and GxB_BACKWARDS, and their related defini-
tions, described in Sections 6.16, 10, and 11.

� Version 2.0 (March 2018) addressed changes in the GraphBLAS C API
Specification and added GxB_kron and GxB_resize.

364

https://github.com/GraphBLAS/LAGraph

� Version 1.1 (Dec 2017) primarily improved the performance.

� Version 1.0 was released on Nov 25, 2017.

19.1 Regarding historical and deprecated functions and
symbols

When a GxB* function or symbol is added to the C API Specification with a
GrB* name, the new GrB* name should be used instead, if possible. However,
the old GxB* name will be kept as long as possible for historical reasons.
Historical functions and symbols will not always be documented here in the
SuiteSparse:GraphBLAS User Guide, but they will be kept in GraphbBLAS.h

and kept in good working order in the library. Historical functions and
symbols would only be removed in the very unlikely case that they cause a
serious conflict with future methods.

The following methods have been fully deprecated and removed. The
older versions of GrB_wait and GrB_error methods have been removed since
they are incompatible with the latest versions, per the C API Specifica-
tion. The GxB_SelectOp_new and GxB_SelectOp_free methods have been
removed, and some of the built-in operators have been been revised (specif-
ically, the GxB_EQ_THUNK, GxB_EQ_ZERO, GxB_NE_THUNK, and GxB_NE_ZERO

operators no longer work on user-defined types).

20 Acknowledgments

I would like to thank Jeremy Kepner (MIT Lincoln Laboratory Supercomput-
ing Center), and the GraphBLAS API Committee: Aydın Buluç (Lawrence
Berkeley National Laboratory), Timothy G. Mattson (Intel Corporation)
Scott McMillan (Software Engineering Institute at Carnegie Mellon Univer-
sity), José Moreira (IBM Corporation), Carl Yang (UC Davis), and Benjamin
Brock (UC Berkeley), for creating the GraphBLAS specification and for pa-
tiently answering my many questions while I was implementing it.

I would like to thank Tim Mattson and Henry Gabb, Intel, Inc., for their
collaboration and for the support of Intel.

I would like to thank Joe Eaton and Corey Nolet for their collaboration
on the CUDA kernels (still in progress), and for the support of NVIDIA.

365

I would like to thank Pat Quillen for his collaboration and for the support
of MathWorks.

I would like to thank John Eaton for his collaboration on the integration
with Octave 7.

I would like to thank Michel Pelletier for his collaboration and work on
the pygraphblas interface, and Jim Kitchen and Erik Welch for their work
on Anaconda’s python interface.

I would like to thank Will Kimmerer for his collaboration and work on
the Julia interface.

I would like to thank John Gilbert (UC Santa Barbara) for our many
discussions on GraphBLAS, and for our decades-long conversation and col-
laboration on sparse matrix computations.

I would like to thank Sébastien Villemot (Debian Developer, http://
sebastien.villemot.name) for helping me with various build issues and other
code issues with GraphBLAS (and all of SuiteSparse) for its packaging in
Debian Linux.

I would like to thank Gábor Szárnyas for porting the @GrB interface to
Octave 7 on Apple Silicon.

I would like to thank Markus Mützel for his help in porting the updates
to GraphBLAS v7.4.1 and SuiteSparse v7.0.0 to Windows.

I would like to thank Roi Lipman, Redis (https://falkordb.com), for our
many discussions on GraphBLAS and for enabling its use in RedisGraph and
FalkorDB, a graph database module for Redis. Based on SuiteSparse:GraphBLAS,
FalkorDB is up 600x faster than the fastest graph databases (https://youtu.be/
9h3Qco x0QE

https://redislabs.com/blog/new-redisgraph-1-0-achieves-600x-faster-performance-graph-databases/).
SuiteSparse:GraphBLAS was developed with support from NVIDIA, In-

tel, MIT Lincoln Lab, MathWorks, Redis, FalkorDB, IBM, the National
Science Foundation (1514406, 1835499), and Julia Computing.

21 Additional Resources

See http://graphblas.org for the GraphBLAS community page. See https:
//github.com/GraphBLAS/GraphBLAS-Pointers for an up-to-date list of addi-
tional resources on GraphBLAS, maintained by Gábor Szárnyas.

366

http://sebastien.villemot.name
http://sebastien.villemot.name
https://falkordb.com
https://youtu.be/9h3Qco_x0QE
https://youtu.be/9h3Qco_x0QE
https://redislabs.com/blog/new-redisgraph-1-0-achieves-600x-faster-performance-graph-databases/
http://graphblas.org
https://github.com/GraphBLAS/GraphBLAS-Pointers
https://github.com/GraphBLAS/GraphBLAS-Pointers

References

[ACD+20] Mohsen Aznaveh, Jinhao Chen, Timothy A. Davis, Bálint
Hegyi, Scott P. Kolodziej, Timothy G. Mattson, and Gábor
Szárnyas. Parallel GraphBLAS with OpenMP. In CSC20, SIAM
Workshop on Combinatorial Scientific Computing. SIAM, 2020.
https://www.siam.org/conferences/cm/conference/csc20.

[BBM+21] B. Brock, A. Buluç, T. Mattson, S. McMillan, and J. Moreira. The Graph-
BLAS C API specification (v2.0). Technical report, GraphBLAS.org, 2021.
http://graphblas.org/.

[BG08] A. Buluç and J. Gilbert. On the representation and multipli-
cation of hypersparse matrices. In IPDPS’80: 2008 IEEE Intl.
Symp. on Parallel and Distributed Processing, pages 1–11, April 2008.
https://dx.doi.org/10.1109/IPDPS.2008.4536313.

[BG12] A. Buluç and J. Gilbert. Parallel sparse matrix-matrix multiplication and
indexing: Implementation and experiments. SIAM Journal on Scientific
Computing, 34(4):C170–C191, 2012. https://dx.doi.org/10.1137/110848244.

[BMM+17a] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang. Design of the
GraphBLAS API for C. In 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 643–652, May 2017.
https://dx.doi.org/10.1109/IPDPSW.2017.117.

[BMM+17b] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang. The
GraphBLAS C API specification. Technical report, GraphBLAS.org, 2017.
http://graphblas.org/.

[DAK19] T. A. Davis, M. Aznaveh, and S. Kolodziej. Write quick, run fast:
Sparse deep neural network in 20 minutes of development time via Suite-
Sparse:GraphBLAS. In IEEE HPEC’19. IEEE, 2019. Grand Challenge
Champion, for high performance. See http://www.ieee-hpec.org/.

[Dav06] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia,
PA, 2006. https://dx.doi.org/10.1137/1.9780898718881.

[Dav18] T. A. Davis. Graph algorithms via SuiteSparse:GraphBLAS: triangle count-
ing and K-truss. In IEEE HPEC’18. IEEE, 2018. Grand Challenge Innova-
tion Award. See http://www.ieee-hpec.org/.

[Dav19] Timothy A. Davis. Algorithm 1000: SuiteSparse:GraphBLAS: Graph algo-
rithms in the language of sparse linear algebra. ACM Trans. Math. Softw.,
45(4), December 2019. https://doi.org/10.1145/3322125.

[Dav23] Timothy A. Davis. Algorithm 1037: Suitesparse:graphblas: Parallel graph
algorithms in the language of sparse linear algebra. ACM Trans. Math.
Softw., 49(3), sep 2023.

367

https://www.siam.org/conferences/cm/conference/csc20
http://graphblas.org/
https://dx.doi.org/10.1109/IPDPS.2008.4536313
https://dx.doi.org/10.1137/110848244
https://dx.doi.org/10.1109/IPDPSW.2017.117
http://graphblas.org/
http://www.ieee-hpec.org/
https://dx.doi.org/10.1137/1.9780898718881
http://www.ieee-hpec.org/
https://doi.org/10.1145/3322125

[DRSL16] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of di-
rect methods for sparse linear systems. Acta Numerica, 25:383–566, 2016.
https://dx.doi.org/10.1017/S0962492916000076.

[Gre21] Oded Green. HashGraph – scalable hash tables using a sparse graph
data structure. ACM Trans. Parallel Comput., 8(2), July 2021.
https://doi.org/10.1145/3460872.

[Gus78] F. G. Gustavson. Two fast algorithms for sparse matrices: Multiplication
and permuted transposition. ACM Transactions on Mathematical Software,
4(3):250–269, 1978. https://dx.doi.org/10.1145/355791.355796.

[Hig02] N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2nd
edition, 2002. https://dx.doi.org/10.1137/1.9780898718027.

[Kep17] J. Kepner. GraphBLAS mathematics. Technical report, MIT, 2017.
http://www.mit.edu/∼kepner/GraphBLAS/GraphBLAS-Math-release.pdf.

[KG11] J. Kepner and J. Gilbert. Graph Algorithms in the Language of Linear
Algebra. SIAM, Philadelphia, PA, 2011.

From the preface: Graphs are among the most important ab-
stract data types in computer science, and the algorithms that
operate on them are critical to modern life. Graphs have been
shown to be powerful tools for modeling complex problems be-
cause of their simplicity and generality. Graph algorithms are
one of the pillars of mathematics, informing research in such
diverse areas as combinatorial optimization, complexity theory,
and topology. Algorithms on graphs are applied in many ways in
today’s world – from Web rankings to metabolic networks, from
finite element meshes to semantic graphs. The current exponen-
tial growth in graph data has forced a shift to parallel computing
for executing graph algorithms. Implementing parallel graph al-
gorithms and achieving good parallel performance have proven
difficult. This book addresses these challenges by exploiting the
well-known duality between a canonical representation of graphs
as abstract collections of vertices and edges and a sparse adja-
cency matrix representation. This linear algebraic approach is
widely accessible to scientists and engineers who may not be
formally trained in computer science. The authors show how to
leverage existing parallel matrix computation techniques and the
large amount of software infrastructure that exists for these com-
putations to implement efficient and scalable parallel graph al-
gorithms. The benefits of this approach are reduced algorithmic
complexity, ease of implementation, and improved performance.
DOI: https://dx.doi.org/10.1137/1.9780898719918

[MBM+24] T. G. Mattson, M. Bezbaruah, M. Maier, S. McMillan, M. Peletier, E. Welch,
and T. A. Davis. Indexed binary operations in the graphblas. In IEEE
HPEC’24. IEEE, 2024.

368

https://dx.doi.org/10.1017/S0962492916000076
https://doi.org/10.1145/3460872
https://dx.doi.org/10.1145/355791.355796
https://dx.doi.org/10.1137/1.9780898718027
http://www.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf
https://dx.doi.org/10.1137/1.9780898719918

[MDK+19] T. Mattson, T. A. Davis, M. Kumar, A. Buluç, S. McMillan, J. Mor-
eira, and C. Yang. LAGraph: a community effort to collect graph
algorithms built on top of the GraphBLAS. In GrAPL’19: Work-
shop on Graphs, Architectures, Programming, and Learning. IEEE, May
2019. https://hpc.pnl.gov/grapl/previous/2019, part of IPDPS’19, at
http://www.ipdps.org/ipdps2019.

[NMAB18] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. High-
performance sparse matrix-matrix products on Intel KNL and multicore ar-
chitectures. In Proceedings of the 47th International Conference on Parallel
Processing Companion, ICPP ’18, New York, NY, USA, 2018. Association
for Computing Machinery. https://doi.org/10.1145/3229710.3229720.

[Wat87] A. J. Wathen. Realistic eigenvalue bounds for the Galerkin
mass matrix. IMA J. Numer. Anal., 7:449–457, 1987.
https://dx.doi.org/10.1093/imanum/7.4.449.

369

https://hpc.pnl.gov/grapl/previous/2019
http://www.ipdps.org/ipdps2019
https://doi.org/10.1145/3229710.3229720
https://dx.doi.org/10.1093/imanum/7.4.449

	Introduction
	Basic Concepts
	Graphs and sparse matrices
	Overview of GraphBLAS methods and operations
	The accumulator and the mask
	Typecasting
	Notation and list of GraphBLAS operations

	Changes in GraphBLAS v10: 32/64 bit integers
	Controlling the sizes of integers
	Passing arrays to/from GraphBLAS
	Container methods: loading/unloading data to/from a matrix or vector
	Historical methods: pack/unpack

	Interfaces to MATLAB, Octave, Python, Julia, Go, Java, ...
	MATLAB/Octave Interface
	Performance of MATLAB versus GraphBLAS
	Python Interface
	Julia Interface
	Go Interface
	Java Interface

	GraphBLAS Initialization/Finalization
	Definitions that modify how GraphBLAS.h behaves
	Overview of GraphBLAS initialization and finalization methods
	GrB_Index: the GraphBLAS integer
	GrB_init: initialize GraphBLAS
	GrB_getVersion: determine the C API Version
	GxB_init: initialize with alternate malloc
	GrB_Info: status code returned by GraphBLAS
	GrB_error: get more details on the last error
	GrB_finalize: finish GraphBLAS

	GraphBLAS Objects and their Methods
	The GraphBLAS type: GrB_Type
	GrB_Type_new: create a user-defined type
	GxB_Type_new: create a user-defined type (with name and definition)
	GrB_Type_wait: wait for a type
	GxB_Type_from_name: return the type from its name
	GrB_Type_free: free a user-defined type

	GraphBLAS unary operators: GrB_UnaryOp, z=f(x)
	GrB_UnaryOp_new: create a user-defined unary operator
	GxB_UnaryOp_new: create a named user-defined unary operator
	GrB_UnaryOp_wait: wait for a unary operator
	GrB_UnaryOp_free: free a user-defined unary operator

	GraphBLAS binary operators: GrB_BinaryOp, z=f(x,y)
	GraphBLAS binary operators based on index binary operators
	GrB_BinaryOp_new: create a user-defined binary operator
	GxB_BinaryOp_new: create a named user-defined binary operator
	GrB_BinaryOp_wait: wait for a binary operator
	GrB_BinaryOp_free: free a user-defined binary operator
	ANY and PAIR (ONEB) operators

	GraphBLAS IndexUnaryOp operators: GrB_IndexUnaryOp
	GrB_IndexUnaryOp_new: create a user-defined index-unary operator
	GxB_IndexUnaryOp_new: create a named user-defined index-unary operator
	GrB_IndexUnaryOp_wait: wait for an index-unary operator
	GrB_IndexUnaryOp_free: free a user-defined index-unary operator

	GraphBLAS index-binary operators: GxB_IndexBinaryOp
	GxB_IndexBinaryOp_new: create a user-defined index-binary operator
	GxB_IndexBinaryOp_wait: wait for an index-binary operator
	GxB_IndexBinaryOp_free: free a user-defined index-binary operator
	GxB_BinaryOp_new_IndexOp: create a index-based binary operator

	GraphBLAS monoids: GrB_Monoid
	GrB_Monoid_new: create a monoid
	GrB_Monoid_wait: wait for a monoid
	GxB_Monoid_terminal_new: create a monoid with terminal
	GrB_Monoid_free: free a monoid

	GraphBLAS semirings: GrB_Semiring
	GrB_Semiring_new: create a semiring
	GrB_Semiring_wait: wait for a semiring
	GrB_Semiring_free: free a semiring

	GraphBLAS scalars: GrB_Scalar
	GrB_Scalar_new: create a scalar
	GrB_Scalar_wait: wait for a scalar
	GrB_Scalar_dup: copy a scalar
	GrB_Scalar_clear: clear a scalar of its entry
	GrB_Scalar_nvals: return the number of entries in a scalar
	GrB_Scalar_setElement: set the single entry of a scalar
	GrB_Scalar_extractElement: get the single entry from a scalar
	GxB_Scalar_memoryUsage: memory used by a scalar
	GxB_Scalar_type: type of a scalar
	GrB_Scalar_free: free a scalar

	GraphBLAS vectors: GrB_Vector
	GrB_Vector_new: create a vector
	GrB_Vector_wait: wait for a vector
	GrB_Vector_dup: copy a vector
	GrB_Vector_clear: clear a vector of all entries
	GrB_Vector_size: return the size of a vector
	GrB_Vector_nvals: return the number of entries in a vector
	GrB_Vector_build: build a vector from a set of tuples
	GrB_Vector_build_Vector: build a vector from a set of tuples
	GxB_Vector_build_Scalar: build a vector from a set of tuples
	GxB_Vector_build_Scalar_Vector: build a vector from a set of tuples
	GrB_Vector_setElement: add an entry to a vector
	GrB_Vector_extractElement: get an entry from a vector
	GxB_Vector_isStoredElement: check if entry present in vector
	GrB_Vector_removeElement: remove an entry from a vector
	GrB_Vector_extractTuples: get all entries from a vector
	GxB_Vector_extractTuples_Vector: get all entries from a vector
	GrB_Vector_resize: resize a vector
	GxB_Vector_diag: extract a diagonal from a matrix
	GxB_Vector_memoryUsage: memory used by a vector
	GxB_Vector_type: type of a vector
	GrB_Vector_free: free a vector

	GraphBLAS matrices: GrB_Matrix
	GrB_Matrix_new: create a matrix
	GrB_Matrix_wait: wait for a matrix
	GrB_Matrix_dup: copy a matrix
	GrB_Matrix_clear: clear a matrix of all entries
	GrB_Matrix_nrows: return the number of rows of a matrix
	GrB_Matrix_ncols: return the number of columns of a matrix
	GrB_Matrix_nvals: return the number of entries in a matrix
	GrB_Matrix_build: build a matrix from a set of tuples
	GxB_Matrix_build_Vector: build a matrix from a set of tuples
	GxB_Matrix_build_Scalar: build a matrix from a set of tuples
	GxB_Matrix_build_Scalar_Vector: build a matrix from a set of tuples
	GrB_Matrix_setElement: add an entry to a matrix
	GrB_Matrix_extractElement: get an entry from a matrix
	GxB_Matrix_isStoredElement: check if entry present in matrix
	GrB_Matrix_removeElement: remove an entry from a matrix
	GrB_Matrix_extractTuples: get all entries from a matrix
	GxB_Matrix_extractTuples_Vector: get all entries from a matrix
	GrB_Matrix_resize: resize a matrix
	GxB_Matrix_reshape: reshape a matrix
	GxB_Matrix_reshapeDup: reshape a matrix
	GxB_Matrix_concat: concatenate matrices
	GxB_Matrix_split: split a matrix
	GrB_Matrix_diag: construct a diagonal matrix
	GxB_Matrix_diag: build a diagonal matrix
	GxB_Matrix_memoryUsage: memory used by a matrix
	GxB_Matrix_type: type of a matrix
	GrB_Matrix_free: free a matrix

	Serialize/deserialize methods
	GxB_Vector_serialize: serialize a vector
	GxB_Vector_deserialize: deserialize a vector
	GrB_Matrix_serializeSize: return size of serialized matrix
	GrB_Matrix_serialize: serialize a matrix
	GxB_Matrix_serialize: serialize a matrix
	GrB_Matrix_deserialize: deserialize a matrix
	GxB_Matrix_deserialize: deserialize a matrix

	The GxB_Container object and its methods
	GxB_Vector_load: load data into a vector
	GxB_Vector_unload: unload data from a vector
	GxB_Container_new: create a container
	GxB_Container_free: free a container
	GxB_load_Matrix_from_Container: load a matrix from a container
	GxB_load_Vector_from_Container: load a vector from a container
	GxB_unload_Matrix_into_Container: unload a matrix into a container
	GxB_unload_Vector_into_Container: unload a vector into a container
	Container example: unloading/loading an entire matrix into C arrays
	Container example: unloading/loading, but not using C arrays

	SuiteSparse:GraphBLAS data formats
	Sparse, held by row
	Sparse, held by column
	Hypersparse, held by row
	Hypersparse, held by column
	Bitmap, held by row
	Bitmap, held by column
	Full, held by row
	Full, held by column

	GraphBLAS import/export: using copy semantics
	GrB_Matrix_import: import a matrix
	GrB_Matrix_export: export a matrix
	GrB_Matrix_exportSize: determine size of export
	GrB_Matrix_exportHint: determine best export format

	Sorting methods
	GxB_Vector_sort: sort a vector
	GxB_Matrix_sort: sort the rows/columns of a matrix

	GraphBLAS descriptors: GrB_Descriptor
	GrB_Descriptor_new: create a new descriptor
	GrB_Descriptor_wait: wait for a descriptor
	GrB_Descriptor_free: free a descriptor
	Descriptor settings for GrB_Vector parameters
	GrB_DESC_*: built-in descriptors

	GrB_free: free any GraphBLAS object

	The mask, accumulator, and replace option
	GxB_Context: controlling computational resources
	GxB_Context_new: create a new context
	GxB_Context_engage: engaging context
	GxB_Context_disengage: disengaging context
	GxB_Context_free: free a context
	GxB_Context_wait: wait for a context

	The SuiteSparse:GraphBLAS JIT
	Using the JIT
	GxB_JIT_C_CONTROL
	JIT error handling
	GxB_JIT_C_COMPILER_NAME
	GxB_JIT_C_COMPILER_FLAGS
	GxB_JIT_C_LINKER_FLAGS
	GxB_JIT_C_LIBRARIES
	GxB_JIT_C_CMAKE_LIBS
	GxB_JIT_C_PREFACE
	GxB_JIT_USE_CMAKE
	GxB_JIT_ERROR_LOG
	GxB_JIT_CACHE_PATH

	Compilation options: GRAPHBLAS_USE_JIT and GRAPHBLAS_COMPACT
	Adding PreJIT kernels to GraphBLAS
	JIT and PreJIT performance considerations
	Mixing JIT kernels: MATLAB and Apple Silicon
	Updating the JIT when GraphBLAS source code changes
	Future plans for the JIT and PreJIT
	Kernel fusion
	Heuristics for controlling the JIT
	CUDA / SYCL / OpenCL kernels
	Better performance for multithreaded user programs:

	GraphBLAS Options (GrB_get and GrB_set)
	Enum types for get/set
	Global Options (GrB_Global)
	Global diagnostic settings
	OpenMP parallelism
	Other global options

	GrB_Type Options
	GrB_UnaryOp Options
	GrB_IndexUnaryOp Options
	GrB_BinaryOp Options
	GxB_IndexBinaryOp Options
	GrB_Monoid Options
	GrB_Semiring Options
	GrB_Matrix Options
	Storing a matrix by row or by column
	Hypersparse matrices
	Bitmap matrices
	Sparsity status
	iso status
	wait status

	GrB_Vector Options
	GrB_Scalar Options
	Controlling the sizes of integers
	GrB_Descriptor Options
	GxB_Context Options
	Options for inspecting a serialized blob

	SuiteSparse:GraphBLAS Colon and Index Notation
	GraphBLAS Operations
	GrB_mxm: matrix-matrix multiply
	GrB_vxm: vector-matrix multiply
	GrB_mxv: matrix-vector multiply
	GrB_eWiseMult: element-wise operations, set intersection
	GrB_Vector_eWiseMult: element-wise vector multiply
	GrB_Matrix_eWiseMult: element-wise matrix multiply

	GrB_eWiseAdd: element-wise operations, set union
	GrB_Vector_eWiseAdd: element-wise vector addition
	GrB_Matrix_eWiseAdd: element-wise matrix addition

	GxB_eWiseUnion: element-wise operations, set union
	GxB_Vector_eWiseUnion: element-wise vector addition
	GxB_Matrix_eWiseUnion: element-wise matrix addition

	GrB_extract: submatrix extraction
	GrB_Vector_extract: extract subvector from vector
	GxB_Vector_extract_Vector: extract subvector from vector
	GrB_Matrix_extract: extract submatrix from matrix
	GxB_Matrix_extract_Vector: extract submatrix from matrix
	GrB_Col_extract: extract column vector from matrix
	GxB_Col_extract_Vector: extract column vector from matrix

	GrB_assign: submatrix assignment
	GrB_Vector_assign: assign to a subvector
	GxB_Vector_assign_Vector: assign to a subvector
	GrB_Matrix_assign: assign to a submatrix
	GxB_Matrix_assign_Vector: assign to a submatrix
	GrB_Col_assign: assign to a sub-column of a matrix
	GxB_Col_assign_Vector: assign to a sub-column of a matrix
	GrB_Row_assign: assign to a sub-row of a matrix
	GxB_Row_assign_Vector: assign to a sub-row of a matrix
	GrB_Vector_assign_<type>: assign a scalar to a subvector
	GxB_Vector_assign_Scalar_Vector: assign a scalar to a subvector
	GrB_Matrix_assign_<type>: assign a scalar to a submatrix
	GxB_Matrix_assign_Scalar_Vector: assign a scalar to a submatrix

	GxB_subassign: submatrix assignment
	GxB_Vector_subassign: assign to a subvector
	GxB_Vector_subassign_Vector: assign to a subvector
	GxB_Matrix_subassign: assign to a submatrix
	GxB_Matrix_subassign_Vector: assign to a submatrix
	GxB_Col_subassign: assign to a sub-column of a matrix
	GxB_Col_subassign_Vector: assign to a sub-column of a matrix
	GxB_Row_subassign: assign to a sub-row of a matrix
	GxB_Row_subassign_Vector: assign to a sub-row of a matrix
	GxB_Vector_subassign_<type>: assign a scalar to a subvector
	GxB_Vector_subassign_Scalar_Vector: assign a scalar to a subvector
	GxB_Matrix_subassign_<type>: assign a scalar to a submatrix
	GxB_Matrix_subassign_Scalar_Vector: assign a scalar to a submatrix

	Duplicate indices in GrB_assign and GxB_subassign
	Comparing GrB_assign and GxB_subassign
	Example
	Performance of GxB_subassign, GrB_assign and GrB_*_setElement

	GrB_apply: apply a unary, binary, or index-unary operator
	GrB_Vector_apply: apply a unary operator to a vector
	GrB_Matrix_apply: apply a unary operator to a matrix
	GrB_Vector_apply_BinaryOp1st: apply a binary operator to a vector; 1st scalar binding
	GrB_Vector_apply_BinaryOp2nd: apply a binary operator to a vector; 2nd scalar binding
	GrB_Vector_apply_IndexOp: apply an index-unary operator to a vector
	GrB_Matrix_apply_BinaryOp1st: apply a binary operator to a matrix; 1st scalar binding
	GrB_Matrix_apply_BinaryOp2nd: apply a binary operator to a matrix; 2nd scalar binding
	GrB_Matrix_apply_IndexOp: apply an index-unary operator to a matrix

	GrB_select: select entries based on an index-unary operator
	GrB_Vector_select: select entries from a vector
	GrB_Matrix_select: apply a select operator to a matrix

	GrB_reduce: reduce to a vector or scalar
	GrB_Matrix_reduce_Monoid reduce a matrix to a vector
	GrB_Vector_reduce_<type>: reduce a vector to a scalar
	GrB_Matrix_reduce_<type>: reduce a matrix to a scalar

	GrB_transpose: transpose a matrix
	GrB_kronecker: Kronecker product

	Printing GraphBLAS objects
	GxB_fprint: Print a GraphBLAS object to a file
	GxB_print: Print a GraphBLAS object to stdout
	GxB_Type_fprint: Print a GrB_Type
	GxB_UnaryOp_fprint: Print a GrB_UnaryOp
	GxB_BinaryOp_fprint: Print a GrB_BinaryOp
	GxB_IndexUnaryOp_fprint: Print a GrB_IndexUnaryOp
	GxB_IndexBinaryOp_fprint: Print a GxB_IndexBinaryOp
	GxB_Monoid_fprint: Print a GrB_Monoid
	GxB_Semiring_fprint: Print a GrB_Semiring
	GxB_Descriptor_fprint: Print a GrB_Descriptor
	GxB_Context_fprint: Print a GxB_Context
	GxB_Matrix_fprint: Print a GrB_Matrix
	GxB_Vector_fprint: Print a GrB_Vector
	GxB_Scalar_fprint: Print a GrB_Scalar
	Performance and portability considerations

	Matrix and Vector iterators
	Creating and destroying an iterator
	Attaching an iterator to a matrix or vector
	Seeking to an arbitrary position
	Advancing to the next position
	Accessing the indices of the current entry
	Accessing the value of the current entry
	Example: row iterator for a matrix
	Example: column iterator for a matrix
	Example: entry iterator for a matrix
	Example: vector iterator
	Performance

	Iso-Valued Matrices and Vectors
	Using iso matrices and vectors in a graph algorithm
	Iso matrices from matrix multiplication
	Iso matrices from eWiseMult and kronecker
	Iso matrices from eWiseAdd
	Iso matrices from eWiseUnion
	Reducing iso matrices to a scalar or vector
	Iso matrices from apply
	Iso matrices from select
	Iso matrices from assign and subassign
	Assignment with no accumulator operator
	Assignment with an accumulator operator

	Iso matrices from build methods
	Iso matrices from other methods
	Iso matrices not exploited

	Performance
	The burble is your friend
	Data types and typecasting: use the JIT
	Matrix data structures: sparse, hypersparse, bitmap, or full
	Matrix formats: by row or by column, or using the transpose of a matrix
	Push/pull optimization
	Computing with full matrices and vectors
	Iso-valued matrices and vectors
	User-defined types and operators: use the JIT
	About NUMA systems

	Examples
	LAGraph
	Creating a random matrix
	Creating a finite-element matrix
	Reading a matrix from a file
	User-defined types and operators
	User applications using OpenMP or other threading models

	Compiling and Installing SuiteSparse:GraphBLAS
	Quick Start
	Requirements
	Installing GraphBLAS for MATLAB/Octave
	More details
	On Linux and Mac
	On the Mac (Intel or ARM)
	On the Intel-based Mac
	On Microsoft Windows
	Mac using clang
	Linking issues after installation
	Running the tests
	Cleaning up

	Release Notes
	Regarding historical and deprecated functions and symbols

	Acknowledgments
	Additional Resources
	References

